Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic n...Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.展开更多
文摘为了解决传统阈值法在核电站主泵状态数据异常检测中的误判、实时性差等问题,提出一种基于单维状态数据特征分析和多维状态数据特征分析相结合的方法。对于单维状态参量,使用AR(auto regressive)模型拟合获得模型参数,再结合SOM(self organizing maps)神经网络的量化结果得到单维状态参量随时间变化的过渡概率序列;对于多维状态参量,使用OPTICS(ordering points to identify the clustering structure)算法聚类生成不同的模式组;然后根据两类特征提取结果综合分析,得到异常检测模型;最后将检测模型应用于主泵状态数据异常检测,并与其他方法进行比较。实验结果表明此模型在准确性、实时性上更具优势。
基金Supported by National Natural Science Foundation of China (No. 70931004)
文摘Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.