The potential energy surfaces (PES) of unimolecular dissociation reactions for di-ethyl beryl- lium and di-t-butyl beryllium are investigated by B3LYP, CCSD(T), and G3B3 approaches. Possible reaction pathways thro...The potential energy surfaces (PES) of unimolecular dissociation reactions for di-ethyl beryl- lium and di-t-butyl beryllium are investigated by B3LYP, CCSD(T), and G3B3 approaches. Possible reaction pathways through either the radical or transition state (TS) of the molecules are considered. The geometries, vibrational frequencies and relative energies for various sta- tionary points are determined. From the study of energetics, the TS pathways arising from concerted molecular eliminations are indicated to be the main dissociation pathways for both molecules. The PES differences of the dissociation reactions are investigated. The activation energies and rate constants will be helpful for investigating the predictive ability of the reaction in further theoretical and experimental research.展开更多
Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially ...Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially improve the photocatalytic efficiency of semiconductors.Because the high cost and scarcity of noble metals markedly limit their large-scale applications,finding a noble-metal-alternative co-catalyst is crucial.MXene,a novel 2D transition metal material,has attracted considerable attention as a promising substitute for noble metal co-catalysts owing to its cost-efficiency,unique 2D layered structure,and excellent electrical,optical,and thermodynamic properties.This review focuses on the latest advancements in research on MXenes as co-catalysts in relatively popular photocatalytic applications(hydrogen production,CO2 reduction,nitrogen fixation,and organic pollutant oxidation).The synthesis methods and photocatalytic mechanisms of MXenes as co-catalysts are also summarized according to the type of MXene-based material.Finally,the crucial opportunities and challenges in the prospective development of MXene-based photocatalysts are outlined.We emphasize that modern techniques should be used to demonstrate the effects of MXenes on photocatalysis and that the photocatalytic activity of MXene-based photocatalysts can be further improved using defective engineering and recent phenomena such as the localized surface plasmon resonance effect and single-atom catalysis.展开更多
Density functional theory calculations were carried out to study the thermal cracking for chrysene molecule to estimate the bond energies for breaking C 10b-C 11, C 11-H 11 and C4a-C 12a bonds as well as the activatio...Density functional theory calculations were carried out to study the thermal cracking for chrysene molecule to estimate the bond energies for breaking C 10b-C 11, C 11-H 11 and C4a-C 12a bonds as well as the activation energies. It was found that for C 10b-C 11 C11-HI 1 and C4a-C12a reactions, it is often possible to identify one pathway for bond breakage through the singlet or triplet states. Thus, the C 11-H11 and C11-C10b bonds ruptured in triplet state whilst the C12a-C4a in singlet state. Also, it was fond that the activation energy value for C4a-C12a bond breakage is lower than required for C10b-C11 and C11-H11 bonds that enquired the C4a-C12a bond "bridge bond" is a weaker and ruptured firstly in thermal cracking process. It seems that the characteristic planarity for polyaromatic hydrocarbons is an important factor to acquire the molecule structure the required stability along the reaction paths as well as the full octet rule and Clar's n-sextet structure, especially when chrysene molecular lose the property of planarity. The atomic charges supported the observation that the breaking bonds C10b-C11, CI1-H11 and C4a-C12a in triplet or singlet states. The configurations in transition state and the conformation for the end products reaction were explained and discussed.展开更多
Theoretical calculations have been carried out to investigate the possible dissociation channels of isoprene. We focus on the major fragment ions of C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+, w...Theoretical calculations have been carried out to investigate the possible dissociation channels of isoprene. We focus on the major fragment ions of C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+, which were observed experimentally from the isoprene dissociative photoionization. The energy calculations were performed with the CBS-QB3 model. All the geometries and energies of the fragments, intermediates and transition states involved in the dissociations channels were determined. Finally, the mechanisms of the dissociation pathways were discussed on the comparison of theoretical and experimental results.展开更多
Binuclear transition metal carbonyl clusters serve as the simplest models in understand- ing metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal c...Binuclear transition metal carbonyl clusters serve as the simplest models in understand- ing metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal carbonyl ions are produced via a pulsed laser vaporiza- tion/supersonic expansion cluster ion source in the gas phase. These ions are studied by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. Density functional theory calculations have been performed on the geometric struc- tures and vibrational spectra of the carbonyl ions. Their geometric and electronic structures are determined by comparison of the experimental IR spectra with the simulated spectra. The structure and the metM-metal and metal-CO bonding of both saturated and unsaturated homonuclear as well as heteronuclear carbonyl cluster cations and anions are discussed.展开更多
A non-equilibrium model of multicomponent melt solidification has been developed in which a Stefan problem with two boundaries is solved numerically, the boundaries being between the solid phase and the two-phase tran...A non-equilibrium model of multicomponent melt solidification has been developed in which a Stefan problem with two boundaries is solved numerically, the boundaries being between the solid phase and the two-phase transition zone and between the two-phase transition zone and the liquid phase. The two-phase zone is represented as a porous medium with variable porosity. The additional force resisting the melt flow due to porosity and introduced by analogy with Darcy's law is taken into account. Computer simulation has been performed of the experiment on Sn-20 wt.%Pb binary alloy solidification by the method of downward-directed crystallization along the gravity vector. The paper shows the results of a quasi two-dimensional benchmark experiment on horizontal (i.e., at the right angle to the gravity vector) directional solidification of a binary Sn-3 wt.%Pb alloy. The calculations were done using two crystallization models: the equilibrium model and the non-equilibrium one. It is shown that the non-equilibrium model gives a better description of the thermal field evolution and solute distribution caused by natural convection.展开更多
Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Nei...Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.展开更多
Temperature-sensitive molecularly imprinted microgels(MIGs)exhibiting esterase activity were prepared by a reverse emulsion method using dialdehyde dextran-histidine conjugate(PAD-His)as the functional macromonomer an...Temperature-sensitive molecularly imprinted microgels(MIGs)exhibiting esterase activity were prepared by a reverse emulsion method using dialdehyde dextran-histidine conjugate(PAD-His)as the functional macromonomer and p-nitrophenyl phosphate(NPP)as the stable transition state analogue(TSA)as well as Co2+as the coordination center.The catalytic activity of MIGs was greatly influenced by the amount of the template,and could be modulated by temperature.The hydrolysis kinetics of p-nitrophenyl acetate(NPA)in the presence of MIGs could be described by the Michaelis-Menten equation.The MichaelisMenten constant and maximum velocity were found to be 2.2×105mol/L and 2.04×10 -8mol/h,respectively.In addition,the MIGs were found to have a high catalytic selectivity to NPA.展开更多
基金ACKNOWLEDGMENTS This work was supported by the NationM Nature Science Foundation of China (No.11104256) and the Open Project of State Key Laboratory Cultivation base for Nonmetal Composites and Functional Mate- rials (No.11zxfk19). We thank Dr. Shuang-lin Hu from the Chemistry Department of Uppsala University in Sweden for helpful suggestion. We would also thank the Hefei National Laboratory for Physical Sciences at the Microscale in University of Science and Technology of China for the computational facilities (Gaussian 09).
文摘The potential energy surfaces (PES) of unimolecular dissociation reactions for di-ethyl beryl- lium and di-t-butyl beryllium are investigated by B3LYP, CCSD(T), and G3B3 approaches. Possible reaction pathways through either the radical or transition state (TS) of the molecules are considered. The geometries, vibrational frequencies and relative energies for various sta- tionary points are determined. From the study of energetics, the TS pathways arising from concerted molecular eliminations are indicated to be the main dissociation pathways for both molecules. The PES differences of the dissociation reactions are investigated. The activation energies and rate constants will be helpful for investigating the predictive ability of the reaction in further theoretical and experimental research.
文摘Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially improve the photocatalytic efficiency of semiconductors.Because the high cost and scarcity of noble metals markedly limit their large-scale applications,finding a noble-metal-alternative co-catalyst is crucial.MXene,a novel 2D transition metal material,has attracted considerable attention as a promising substitute for noble metal co-catalysts owing to its cost-efficiency,unique 2D layered structure,and excellent electrical,optical,and thermodynamic properties.This review focuses on the latest advancements in research on MXenes as co-catalysts in relatively popular photocatalytic applications(hydrogen production,CO2 reduction,nitrogen fixation,and organic pollutant oxidation).The synthesis methods and photocatalytic mechanisms of MXenes as co-catalysts are also summarized according to the type of MXene-based material.Finally,the crucial opportunities and challenges in the prospective development of MXene-based photocatalysts are outlined.We emphasize that modern techniques should be used to demonstrate the effects of MXenes on photocatalysis and that the photocatalytic activity of MXene-based photocatalysts can be further improved using defective engineering and recent phenomena such as the localized surface plasmon resonance effect and single-atom catalysis.
文摘Density functional theory calculations were carried out to study the thermal cracking for chrysene molecule to estimate the bond energies for breaking C 10b-C 11, C 11-H 11 and C4a-C 12a bonds as well as the activation energies. It was found that for C 10b-C 11 C11-HI 1 and C4a-C12a reactions, it is often possible to identify one pathway for bond breakage through the singlet or triplet states. Thus, the C 11-H11 and C11-C10b bonds ruptured in triplet state whilst the C12a-C4a in singlet state. Also, it was fond that the activation energy value for C4a-C12a bond breakage is lower than required for C10b-C11 and C11-H11 bonds that enquired the C4a-C12a bond "bridge bond" is a weaker and ruptured firstly in thermal cracking process. It seems that the characteristic planarity for polyaromatic hydrocarbons is an important factor to acquire the molecule structure the required stability along the reaction paths as well as the full octet rule and Clar's n-sextet structure, especially when chrysene molecular lose the property of planarity. The atomic charges supported the observation that the breaking bonds C10b-C11, CI1-H11 and C4a-C12a in triplet or singlet states. The configurations in transition state and the conformation for the end products reaction were explained and discussed.
基金This work was supported by the National Natural Science Foundation of China (No.91544228, No.21307137, No.41575125, No.41375127, No.U1232209) and the Outstanding Youth Science Foundation of Fujian Province of China (No.2015J06009).
文摘Theoretical calculations have been carried out to investigate the possible dissociation channels of isoprene. We focus on the major fragment ions of C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+, which were observed experimentally from the isoprene dissociative photoionization. The energy calculations were performed with the CBS-QB3 model. All the geometries and energies of the fragments, intermediates and transition states involved in the dissociations channels were determined. Finally, the mechanisms of the dissociation pathways were discussed on the comparison of theoretical and experimental results.
基金supported by the National Natural Science Foundation of China(No.21688102,No.21573047and No.21273045)
文摘Binuclear transition metal carbonyl clusters serve as the simplest models in understand- ing metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal carbonyl ions are produced via a pulsed laser vaporiza- tion/supersonic expansion cluster ion source in the gas phase. These ions are studied by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. Density functional theory calculations have been performed on the geometric struc- tures and vibrational spectra of the carbonyl ions. Their geometric and electronic structures are determined by comparison of the experimental IR spectra with the simulated spectra. The structure and the metM-metal and metal-CO bonding of both saturated and unsaturated homonuclear as well as heteronuclear carbonyl cluster cations and anions are discussed.
文摘A non-equilibrium model of multicomponent melt solidification has been developed in which a Stefan problem with two boundaries is solved numerically, the boundaries being between the solid phase and the two-phase transition zone and between the two-phase transition zone and the liquid phase. The two-phase zone is represented as a porous medium with variable porosity. The additional force resisting the melt flow due to porosity and introduced by analogy with Darcy's law is taken into account. Computer simulation has been performed of the experiment on Sn-20 wt.%Pb binary alloy solidification by the method of downward-directed crystallization along the gravity vector. The paper shows the results of a quasi two-dimensional benchmark experiment on horizontal (i.e., at the right angle to the gravity vector) directional solidification of a binary Sn-3 wt.%Pb alloy. The calculations were done using two crystallization models: the equilibrium model and the non-equilibrium one. It is shown that the non-equilibrium model gives a better description of the thermal field evolution and solute distribution caused by natural convection.
基金supported by the National Natural Science Foundation of China(51804216,51472178 and U1601216)Tianjin Natural Science Foundation(16JCYBJC17600)and Shen-zhen Science and Technology Foundation(JCYJ20170307145703486)
文摘Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.
基金supported by the National Natural Science Foundation of China(21074152,20874116,20676155 and J0730420)the Natural Science Foundation of Guangdong Province in China(8151027501000004 and 9151027501000105)the Doctoral Research Program of Ministry of Education Ministry of China(20090171110023)
文摘Temperature-sensitive molecularly imprinted microgels(MIGs)exhibiting esterase activity were prepared by a reverse emulsion method using dialdehyde dextran-histidine conjugate(PAD-His)as the functional macromonomer and p-nitrophenyl phosphate(NPP)as the stable transition state analogue(TSA)as well as Co2+as the coordination center.The catalytic activity of MIGs was greatly influenced by the amount of the template,and could be modulated by temperature.The hydrolysis kinetics of p-nitrophenyl acetate(NPA)in the presence of MIGs could be described by the Michaelis-Menten equation.The MichaelisMenten constant and maximum velocity were found to be 2.2×105mol/L and 2.04×10 -8mol/h,respectively.In addition,the MIGs were found to have a high catalytic selectivity to NPA.