With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settleme...With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settlement will be created in bridge-embankment transition section under such dynamic action, and an adverse effect on the train operation safety can be caused. Meanwhile, differential settlement will produce additional dynamic effect when high-speed trains go through the transition between bridge-embankment. Such dynamic action will aggravate the differential settlement and subgrade damage. This paper applies the methods of field test and finite-element to systematically study the dynamic response characteristics of subgrade in bridge-embankment transition section of heavy haul railway under dynamic load for the first time. This research is focused on the analysis of influence of the different axle load, train speed, filled soil modulus, etc.. At last, the dynamic response rules are systematically summarized.展开更多
Experiments of local scouring around three piers were carried out under steady clear-water conditions. We investigated the role of pier spacing and flow rate in scour depth and progression. The scour-hole depth around...Experiments of local scouring around three piers were carried out under steady clear-water conditions. We investigated the role of pier spacing and flow rate in scour depth and progression. The scour-hole depth around the upstream pier was the same as that for single piers and independent of pier spacing. The scour behavior of the middle and downstream piers progressed through a synchronous scouring region, a transition region, and a radical deviation region as the fluid velocity increased. The critical velocity from the synchronous scouring region to the transition region for the middle and downstream piers was the same, which linearly increased with pier spacing. The degree of deviation in the radical deviation region for the middle and downstream piers was dependent on the pier spacing. The critical velocity from the transition region to the radical deviation region for the middle pier increased with the pier spacing. When the spacing was larger than 11 times the diameter of a pier, the scour depths of the three-pier configuration were the same as for the single piers, which indicates the limit of inter-pier fluid–structure interaction. Finally, the data from this study are used to derive adjustment factors to predict the local scour depth around three piers.展开更多
We study the fluctuation-activated transition process in a system of two coupled forced bistable oscillators with a mismatch σ in the force constants. As the coupling strength μ is increased, the transition pathway ...We study the fluctuation-activated transition process in a system of two coupled forced bistable oscillators with a mismatch σ in the force constants. As the coupling strength μ is increased, the transition pathway undergoes four stages changes from a two-step process with two candidate pathways to a mixture of a two-step pathway and a one-step pathway to a one-step process with also two candidate pathways and then to a one-step process with a single pathway.Interestingly, we find that the total transition rate depends nonmonotonically on σ in the weak coupling: a maximal rate appears in an intermediate magnitude of σ. Moreover, the rate also exhibits an unexpected maximum as a function ofμ. The results are in an excellent agreement with our numerical simulations by forward flux sampling.展开更多
文摘With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settlement will be created in bridge-embankment transition section under such dynamic action, and an adverse effect on the train operation safety can be caused. Meanwhile, differential settlement will produce additional dynamic effect when high-speed trains go through the transition between bridge-embankment. Such dynamic action will aggravate the differential settlement and subgrade damage. This paper applies the methods of field test and finite-element to systematically study the dynamic response characteristics of subgrade in bridge-embankment transition section of heavy haul railway under dynamic load for the first time. This research is focused on the analysis of influence of the different axle load, train speed, filled soil modulus, etc.. At last, the dynamic response rules are systematically summarized.
基金supported by the China National Funds for Distinguished Young Scientists(Grant No.51125034)the National Natural Science Foundation of China(Grant No.51279046)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.2014B00114)the National Basic Research Program of China(“973”Project)(Grant No.2011CB403303)Colleges and Universities in Jiangsu Province plans to graduate research and innovation(Grant No.146)
文摘Experiments of local scouring around three piers were carried out under steady clear-water conditions. We investigated the role of pier spacing and flow rate in scour depth and progression. The scour-hole depth around the upstream pier was the same as that for single piers and independent of pier spacing. The scour behavior of the middle and downstream piers progressed through a synchronous scouring region, a transition region, and a radical deviation region as the fluid velocity increased. The critical velocity from the synchronous scouring region to the transition region for the middle and downstream piers was the same, which linearly increased with pier spacing. The degree of deviation in the radical deviation region for the middle and downstream piers was dependent on the pier spacing. The critical velocity from the transition region to the radical deviation region for the middle pier increased with the pier spacing. When the spacing was larger than 11 times the diameter of a pier, the scour depths of the three-pier configuration were the same as for the single piers, which indicates the limit of inter-pier fluid–structure interaction. Finally, the data from this study are used to derive adjustment factors to predict the local scour depth around three piers.
基金Supported by Natural Science Foundation of China under Grant Nos.11205002,11475003,21125313"211 project"of Anhui University under Grant No.02303319-33190133
文摘We study the fluctuation-activated transition process in a system of two coupled forced bistable oscillators with a mismatch σ in the force constants. As the coupling strength μ is increased, the transition pathway undergoes four stages changes from a two-step process with two candidate pathways to a mixture of a two-step pathway and a one-step pathway to a one-step process with also two candidate pathways and then to a one-step process with a single pathway.Interestingly, we find that the total transition rate depends nonmonotonically on σ in the weak coupling: a maximal rate appears in an intermediate magnitude of σ. Moreover, the rate also exhibits an unexpected maximum as a function ofμ. The results are in an excellent agreement with our numerical simulations by forward flux sampling.