Perovskite manganites show exotic functionalities due to the coupling between spin, charge, orbital and lattice, such as metal-insulator transition, colossal magnetoresistance ( CMR ) , charge-orbital order and phas...Perovskite manganites show exotic functionalities due to the coupling between spin, charge, orbital and lattice, such as metal-insulator transition, colossal magnetoresistance ( CMR ) , charge-orbital order and phase separation. Recently, an extraordinary anisotropic magnetoresistance ( AMR ) has been observed in perovskite manganite single crystals. The AMR value is about 2 orders larger than that of the conventional 3E transition metals and alloys, which is attributed to tunable metal-insulator transition temperature modulated by the magnetic field. This result provides a new route for exploring novel AMR materials and their applications.展开更多
基金supported by National Natural Science Foundation of China(10874192)
文摘Perovskite manganites show exotic functionalities due to the coupling between spin, charge, orbital and lattice, such as metal-insulator transition, colossal magnetoresistance ( CMR ) , charge-orbital order and phase separation. Recently, an extraordinary anisotropic magnetoresistance ( AMR ) has been observed in perovskite manganite single crystals. The AMR value is about 2 orders larger than that of the conventional 3E transition metals and alloys, which is attributed to tunable metal-insulator transition temperature modulated by the magnetic field. This result provides a new route for exploring novel AMR materials and their applications.