Solid–liquid separation is a vital step in drilling sludge disposal, and the filterability and settleability of drilling sludge are the main evaluating indicators for the separation process. The influence of Na^+,K^+...Solid–liquid separation is a vital step in drilling sludge disposal, and the filterability and settleability of drilling sludge are the main evaluating indicators for the separation process. The influence of Na^+,K^+,Mg^(2+),Ca^(2+),and Fe^(3+) on drilling sludge filterability and settleability was investigated in our research. The water content,filtration rate, supernatant volume and supernatant turbidity were measured to evaluate the filterability and settleability of drilling sludge. Meanwhile, the zeta potential, specific surface area of sludge flocs, particle size distribution and Fourier-transformed infrared spectra were employed to clarify the influencing mechanism.The experimental results showed that the filterability and settleability of drilling sludge were related to concentration and types of cations. Mg^(2+),Ca^(2+),and Fe^(3+) performed better than Na^+, K^+, and the cations with smaller hydrated radius got superior solid–liquid separation behavior at same valence. Finally, the spectra indicated that no chemical adsorption occurred between inorganic cations and drilling sludge flocs. The variation of surface charge and flocs growth after adding different inorganic cations were the reasons for the changes of the filterability and settleability.展开更多
In this paper, the course of the filtration is analyzed.In order to study the filtration efficiency of the filter material, the computer program was edited.According to the results of the computer program, some import...In this paper, the course of the filtration is analyzed.In order to study the filtration efficiency of the filter material, the computer program was edited.According to the results of the computer program, some important parameters of the filter material are discussed.It shows that the filtration efficiency is closely related to the diameter (d) and the size (b) .In addition, by using these results and the computer program, we can analysis the relationship between the fiber structure and filter properties quantitatively.展开更多
基金Supported by the National Natural Science Foundation of China(No.21376167)
文摘Solid–liquid separation is a vital step in drilling sludge disposal, and the filterability and settleability of drilling sludge are the main evaluating indicators for the separation process. The influence of Na^+,K^+,Mg^(2+),Ca^(2+),and Fe^(3+) on drilling sludge filterability and settleability was investigated in our research. The water content,filtration rate, supernatant volume and supernatant turbidity were measured to evaluate the filterability and settleability of drilling sludge. Meanwhile, the zeta potential, specific surface area of sludge flocs, particle size distribution and Fourier-transformed infrared spectra were employed to clarify the influencing mechanism.The experimental results showed that the filterability and settleability of drilling sludge were related to concentration and types of cations. Mg^(2+),Ca^(2+),and Fe^(3+) performed better than Na^+, K^+, and the cations with smaller hydrated radius got superior solid–liquid separation behavior at same valence. Finally, the spectra indicated that no chemical adsorption occurred between inorganic cations and drilling sludge flocs. The variation of surface charge and flocs growth after adding different inorganic cations were the reasons for the changes of the filterability and settleability.
文摘In this paper, the course of the filtration is analyzed.In order to study the filtration efficiency of the filter material, the computer program was edited.According to the results of the computer program, some important parameters of the filter material are discussed.It shows that the filtration efficiency is closely related to the diameter (d) and the size (b) .In addition, by using these results and the computer program, we can analysis the relationship between the fiber structure and filter properties quantitatively.