The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechan...The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechanics and gas dynamics, the model of coupled gas flow' and deformation process of heterogeneous coal was presented and the effects of heterogeneity of coal on gas flow and failure of coal wcrc investigated. Major findings include: The effect of the heterogeneity of coal on gas flow and mechanical thilure of coal can be considered by the model in this paper. Failure of coal has a great effect on gas flow.展开更多
An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The tech...An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The technology of drilling,boreholesealing depth,borehole sealing length,sealing control of the measuring process,compensatorycomputation of gas loss quantity and other key techniques were discussed.Finally,based on the latest instrument the authors developed,a series of experiments of directgas pressure measurement in the coal roadways of the Jincheng and Tongchuanmine district,were carried out.The experimental results show that active gas pressuremeasurement technique has advantages as follows:(1) the application scope of direct gaspressure measurement technique is wide and it does not have the restriction of coalhardness,coal seam fissure and other conditions;(2) the measured results are credible,which can be tested by the same gas pressure value acquired from a different borehole inthe same place;(3) the measurement process is convenient and quick,it takes about 2 to3 days to acquire the gas pressure value in a coal seam.展开更多
Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the met...Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.展开更多
The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone...The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone aquifers.Our study describes the mechanism of mine water inrushes through a fault in the mine floor using principles of strata mechanics and the path of water inrush from an aquifer to the working face.A criterion to judge whether a ground water inrush will occur through a fault or not is also described, together with a case history of water inflow in the Feicheng coalfield, China.展开更多
Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bend...Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bending moment for high-position,hard and thick strata were constructed by theoretical analysis,and the initial breaking position of high-position,hard and thick strata was also analyzed.The breaking process and evolution law of mining stress in high-position,hard and thick strata were studied by similar material simulation tests.Studies show that:due to the foundation deformation effect of the lower strata,the initial break position in high-position,hard thick layers is in the middle of goaf;vertical tension fractures first occur under the middle surface,then tilt tension fractures form at both sides and a non-uniform thickness of the fracture structure forms and produces subsidence deformation;behind the coal wall tilt fractures extend and eventually complete the migration.Mining stress produces obvious changes before and after the breakage of the high,hard and thick stratum;high stress concentration forms in front of the coal wall before breakage and fracture stress concentration significantly reduces after migration.Coal seam mining under high-position,hard thick strata can easily induce dynamic phenomena.展开更多
To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed ...To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed combustion.Flame characteristics under such combustion conditions are expected to be different from those in normal air fired combustion processes.Quantified flame characteristics such as temperature distribution,oscillation frequency,and ignition volume play an important part in the optimized design and operation of the environmentally friendly power generation systems.However,it is challenging to obtain such flame characteristics particularly through a three-dimensional and non-intrusive means.Various tomography methods have been proposed to visualize and characterize flames,including passive optical tomography,laser based tomography,and electrical tomography.This paper identifies the challenges in flame tomography and reviews existing techniques for the quantitative characterization of flames.Future trends in flame tomography for industrial applications are discussed.展开更多
This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution pro...This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.展开更多
In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and ...In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place.展开更多
基金Supported by the Key National Natural Science Foundation of China (50434020) the Natural Science Foundation of Hebei Province, China (E2010000872, Z2009315)
文摘The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechanics and gas dynamics, the model of coupled gas flow' and deformation process of heterogeneous coal was presented and the effects of heterogeneity of coal on gas flow and failure of coal wcrc investigated. Major findings include: The effect of the heterogeneity of coal on gas flow and mechanical thilure of coal can be considered by the model in this paper. Failure of coal has a great effect on gas flow.
基金Supported by National Basic Research Program of China(2005cb221504)National Key Technologies R & D Program of China(2006BAK03B01)
文摘An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The technology of drilling,boreholesealing depth,borehole sealing length,sealing control of the measuring process,compensatorycomputation of gas loss quantity and other key techniques were discussed.Finally,based on the latest instrument the authors developed,a series of experiments of directgas pressure measurement in the coal roadways of the Jincheng and Tongchuanmine district,were carried out.The experimental results show that active gas pressuremeasurement technique has advantages as follows:(1) the application scope of direct gaspressure measurement technique is wide and it does not have the restriction of coalhardness,coal seam fissure and other conditions;(2) the measured results are credible,which can be tested by the same gas pressure value acquired from a different borehole inthe same place;(3) the measurement process is convenient and quick,it takes about 2 to3 days to acquire the gas pressure value in a coal seam.
文摘Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.
基金Projects Y2007F46 supported by the Natural Science Foundation of Shandong Province20070424005 by the Doctor Disciplines Special Scientific Researc Foundation of the Ministry of Education+1 种基金108158 by the Key Project of the Ministry of Education of China50539080 by the National Natural Scienc Foundation of China
文摘The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone aquifers.Our study describes the mechanism of mine water inrushes through a fault in the mine floor using principles of strata mechanics and the path of water inrush from an aquifer to the working face.A criterion to judge whether a ground water inrush will occur through a fault or not is also described, together with a case history of water inflow in the Feicheng coalfield, China.
基金financially supported by the National Natural Science Foundation of China (No.51374139)the Natural Science Foundation of Shandong Province (No.ZR2013EEM018)the Scientific Research Innovation Team Support Plan of Shandong University of Science and Technology
文摘Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bending moment for high-position,hard and thick strata were constructed by theoretical analysis,and the initial breaking position of high-position,hard and thick strata was also analyzed.The breaking process and evolution law of mining stress in high-position,hard and thick strata were studied by similar material simulation tests.Studies show that:due to the foundation deformation effect of the lower strata,the initial break position in high-position,hard thick layers is in the middle of goaf;vertical tension fractures first occur under the middle surface,then tilt tension fractures form at both sides and a non-uniform thickness of the fracture structure forms and produces subsidence deformation;behind the coal wall tilt fractures extend and eventually complete the migration.Mining stress produces obvious changes before and after the breakage of the high,hard and thick stratum;high stress concentration forms in front of the coal wall before breakage and fracture stress concentration significantly reduces after migration.Coal seam mining under high-position,hard thick strata can easily induce dynamic phenomena.
基金Supported by the National Natural Science Foundation of China(50736002,61072005)the 1000-Talent-Plan,Changjiang Scholars and Innovative Team Development Plan(IRT0952)partly by Research Councils United Kingdom's Energy Programme(EP/G063214/1)
文摘To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed combustion.Flame characteristics under such combustion conditions are expected to be different from those in normal air fired combustion processes.Quantified flame characteristics such as temperature distribution,oscillation frequency,and ignition volume play an important part in the optimized design and operation of the environmentally friendly power generation systems.However,it is challenging to obtain such flame characteristics particularly through a three-dimensional and non-intrusive means.Various tomography methods have been proposed to visualize and characterize flames,including passive optical tomography,laser based tomography,and electrical tomography.This paper identifies the challenges in flame tomography and reviews existing techniques for the quantitative characterization of flames.Future trends in flame tomography for industrial applications are discussed.
基金Supported by the National Basic Research Program of China(2011ZX05060-0052009ZX05039-003)+2 种基金the National Natural Science Foundation of China(21106176)the President Fund of GUCAS(Y15101JY00)the National Science Foundation for Post-doctoral Scientists of China(20110490627)
文摘This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.
基金financial support from the National Basic Research Program of China (No.2005CB221500)the National Natural Science Foundation of China (Nos.50534049,50674087 and 50974107)the Natural Science Foundation of Jiangsu Province (No.BK2007029)
文摘In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place.