淤地坝作为黄土丘陵沟壑区水土流失治理的重要工程措施之一,其坝系优化布局、相对稳定性及坝地效益等受到广泛关注,但对其淤积过程研究甚少。该文通过对黄土高原淤地坝进行调查,典型坝淤积过程剖面的观测及取样分析,结合库容曲线和每个...淤地坝作为黄土丘陵沟壑区水土流失治理的重要工程措施之一,其坝系优化布局、相对稳定性及坝地效益等受到广泛关注,但对其淤积过程研究甚少。该文通过对黄土高原淤地坝进行调查,典型坝淤积过程剖面的观测及取样分析,结合库容曲线和每个淤积层的淤积厚度求出分层淤积量。根据暴雨产沙过程原理及淤积过程降雨资料,反演淤地坝各淤积层所对应的次侵蚀性降雨,建立层淤积量与相应次侵蚀性降雨指标的相关方程。研究结果表明:坝地淤积物中层淤积量和次侵蚀性降雨的降雨侵蚀力呈幂函数关系,层淤积量和次侵蚀性降雨的最大30 m in降雨强度呈指数函数关系,经检验结果良好。展开更多
Based on mine fire fighting practices at the 1110 working face of the Brapukuria Coal Mine,Bangladesh,we introduce and discuss the Y-Inversion Ventilation System,the latest technology used both in mine fire zone manag...Based on mine fire fighting practices at the 1110 working face of the Brapukuria Coal Mine,Bangladesh,we introduce and discuss the Y-Inversion Ventilation System,the latest technology used both in mine fire zone management and the unsealing process.This ventilation system can ensure that all miners breathed fresh air,providing protection for them during fire fighting and unsealing the fire zone.On the other hand,adjusting the amount of air at the working face and forming a CO leakage path controlled the state of the fire and as well ensured that the different fire extinguishing measures could be applied successfully.These are all fundamental techniques which ensured successful fire extinguishing and unsealing of the fire zone.We also analyzed the main reasons for the spontaneous coal combustion that occurred at the 1110 working face.Successful application of advanced composite polymer colloidal perfusion techniques,polymer foam MEA perfusion and fire-prevention technology by infusing nitrogen,used in mine fire zone management and unsealing,are presented.We value the experience with these techniques very highly and are of the opinion that these techniques could be widely used in mine fire fighting practices under similar spontaneous coal combustion conditions elsewhere.展开更多
Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resour...Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resources management and flood control. With land surface process model and snow process model, the snow water equivalent can be simulated with certain accuracy, with the forcing data as input. However, the snow water equivalent simulated using the snow process models has large uncertainties spatially and temporally, and it may be far from the needs of practical applications. Thus, the large scale snow water equivalent information is mainly from remote sensing. Beginning with the launch of Nimbus-7 satellite, the research on microwave snow water equivalent remote sensing has developed for more than 30 years, researchers have made progress in many aspects, including the electromagnetic scattering and emission modeling, ground and airborne experiments, and inversion algorithms for future global high resolution snow water equivalent remote sensing program. In this paper, the research and progress in the aspects of electromagnetic scattering/emission modeling over snow covered terrain and snow water equivalent inversion algorithm will be summarized.展开更多
文摘淤地坝作为黄土丘陵沟壑区水土流失治理的重要工程措施之一,其坝系优化布局、相对稳定性及坝地效益等受到广泛关注,但对其淤积过程研究甚少。该文通过对黄土高原淤地坝进行调查,典型坝淤积过程剖面的观测及取样分析,结合库容曲线和每个淤积层的淤积厚度求出分层淤积量。根据暴雨产沙过程原理及淤积过程降雨资料,反演淤地坝各淤积层所对应的次侵蚀性降雨,建立层淤积量与相应次侵蚀性降雨指标的相关方程。研究结果表明:坝地淤积物中层淤积量和次侵蚀性降雨的降雨侵蚀力呈幂函数关系,层淤积量和次侵蚀性降雨的最大30 m in降雨强度呈指数函数关系,经检验结果良好。
基金supported by the Key Laboratory Opening Fund of Coalmine Gas & Fire Protection of Henan Province (No.HKLGF200702)
文摘Based on mine fire fighting practices at the 1110 working face of the Brapukuria Coal Mine,Bangladesh,we introduce and discuss the Y-Inversion Ventilation System,the latest technology used both in mine fire zone management and the unsealing process.This ventilation system can ensure that all miners breathed fresh air,providing protection for them during fire fighting and unsealing the fire zone.On the other hand,adjusting the amount of air at the working face and forming a CO leakage path controlled the state of the fire and as well ensured that the different fire extinguishing measures could be applied successfully.These are all fundamental techniques which ensured successful fire extinguishing and unsealing of the fire zone.We also analyzed the main reasons for the spontaneous coal combustion that occurred at the 1110 working face.Successful application of advanced composite polymer colloidal perfusion techniques,polymer foam MEA perfusion and fire-prevention technology by infusing nitrogen,used in mine fire zone management and unsealing,are presented.We value the experience with these techniques very highly and are of the opinion that these techniques could be widely used in mine fire fighting practices under similar spontaneous coal combustion conditions elsewhere.
基金funded by the Strategic Priority Research Program for Space Sciences(Grant No.XDA04061200)of the Chinese Academy of SciencesNational Basic Research Program of China(Grant No.2015CB953701)
文摘Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resources management and flood control. With land surface process model and snow process model, the snow water equivalent can be simulated with certain accuracy, with the forcing data as input. However, the snow water equivalent simulated using the snow process models has large uncertainties spatially and temporally, and it may be far from the needs of practical applications. Thus, the large scale snow water equivalent information is mainly from remote sensing. Beginning with the launch of Nimbus-7 satellite, the research on microwave snow water equivalent remote sensing has developed for more than 30 years, researchers have made progress in many aspects, including the electromagnetic scattering and emission modeling, ground and airborne experiments, and inversion algorithms for future global high resolution snow water equivalent remote sensing program. In this paper, the research and progress in the aspects of electromagnetic scattering/emission modeling over snow covered terrain and snow water equivalent inversion algorithm will be summarized.