高铝水平操作工艺尽管一定程度上降低了漏槽风险,却存在电解槽沉淀增多、炉底压降升高、侧部散热增加和能耗增加等问题。利用统计过程控制方法设计的氟化铝添加策略和调控电解槽热平衡方式,能够保障在降低铝水平、降低槽电压的同时保持...高铝水平操作工艺尽管一定程度上降低了漏槽风险,却存在电解槽沉淀增多、炉底压降升高、侧部散热增加和能耗增加等问题。利用统计过程控制方法设计的氟化铝添加策略和调控电解槽热平衡方式,能够保障在降低铝水平、降低槽电压的同时保持电解生产稳定运行。研究结果表明,具有破损趋势的铝电解槽生产工艺经过优化后,槽温、分子比、氟化铝下料量、热波动幅度显著降低,电解槽更加稳定。4台试验槽与对比槽相比,电流效率提高1.29%,铝直流电耗减少93 k Wh/t。展开更多
Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been w...Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.展开更多
Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Labor...Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.展开更多
In response to many multi-attribute decision-making(MADM)problems involved in chemical processes such as controller tuning,which suffer human's subjective preferential nature in human–computer interactions,a nove...In response to many multi-attribute decision-making(MADM)problems involved in chemical processes such as controller tuning,which suffer human's subjective preferential nature in human–computer interactions,a novel affective computing and preferential evolutionary solution is proposed to adapt human–computer interaction mechanism.Based on the stimulating response mechanism,an improved affective computing model is introduced to quantify decision maker's preference in selections of interactive evolutionary computing.In addition,the mathematical relationship between affective space and decision maker's preferences is constructed.Subsequently,a human–computer interactive preferential evolutionary algorithm for MADM problems is proposed,which deals with attribute weights and optimal solutions based on preferential evolution metrics.To exemplify applications of the proposed methods,some test functions and,emphatically,controller tuning issues associated with a chemical process are investigated,giving satisfactory results.展开更多
文摘高铝水平操作工艺尽管一定程度上降低了漏槽风险,却存在电解槽沉淀增多、炉底压降升高、侧部散热增加和能耗增加等问题。利用统计过程控制方法设计的氟化铝添加策略和调控电解槽热平衡方式,能够保障在降低铝水平、降低槽电压的同时保持电解生产稳定运行。研究结果表明,具有破损趋势的铝电解槽生产工艺经过优化后,槽温、分子比、氟化铝下料量、热波动幅度显著降低,电解槽更加稳定。4台试验槽与对比槽相比,电流效率提高1.29%,铝直流电耗减少93 k Wh/t。
基金Supported by Natural Science Foundation of Tianjin (07JCY- BJC05400), Opening Project of National Laboratory of Industrial Control Technology of Zhejiang University (0708001), Program for New Century Excellent Talents in University (NCET-06-0210)
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202)+2 种基金the National Science Fund for Outstanding Young Scholars(61222303)the National Natural Science Foundation of China(61174118,21206037)Shanghai Leading Academic Discipline Project(B504)
文摘Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.
基金Supported by the National Key Technologies R&D Program (2011BAE28B01) and the National Natural Science Foundation of China (21276016).
文摘Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.
基金Supported by the Fundamental Research Funds for the Central Universities(ZY1347and YS1404)
文摘In response to many multi-attribute decision-making(MADM)problems involved in chemical processes such as controller tuning,which suffer human's subjective preferential nature in human–computer interactions,a novel affective computing and preferential evolutionary solution is proposed to adapt human–computer interaction mechanism.Based on the stimulating response mechanism,an improved affective computing model is introduced to quantify decision maker's preference in selections of interactive evolutionary computing.In addition,the mathematical relationship between affective space and decision maker's preferences is constructed.Subsequently,a human–computer interactive preferential evolutionary algorithm for MADM problems is proposed,which deals with attribute weights and optimal solutions based on preferential evolution metrics.To exemplify applications of the proposed methods,some test functions and,emphatically,controller tuning issues associated with a chemical process are investigated,giving satisfactory results.