A finite horizon predictive control algorithm, which applies a saturated feedback control law as its local control law, is presented for nonlinear systems with time-delay subject to input constraints. In the algorithm...A finite horizon predictive control algorithm, which applies a saturated feedback control law as its local control law, is presented for nonlinear systems with time-delay subject to input constraints. In the algorithm, N free control moves, a saturated local control law and the terminal weighting matrices are solved by a minimization problem based on linear matrix inequality (LMI) constraints online. Compared with the algorithm with a nonsaturated local law, the presented algorithm improves the performances of the closed-loop systems such as feasibility and optimality. This model predictive control (MPC) algorithm is applied to an industrial continuous stirred tank reactor (CSTR) with explicit input constraint. The simulation results demonstrate that the presented algorithm is effective.展开更多
With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduce...With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduces a simulation algorithm about a refinery based on virtual reality,and explains how the algorithm can be applied to the virtual refinery integrated simulation platform in detail.The virtual refinery simulation platform,which consists of a three-dimensional scene system,an integrated database system and a dynamic-static simulation system,has many applications,such as dynamic-static simulation of key process unit used as process control and oil tank blending simulation for scheduling.With the visualization and human-computer interaction for acquiring production and process data,this platform can provide effective supports on staff training related with monitoring,control and operation in refinery.Virtual refinery can also be web published through the internet and it is helpful for the distance training and education.展开更多
The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is tra...The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is transformed into another form and the corresponding theorem is proved, then its applicable range is extended. Compared with other algorithms on the integral processes, this algorithm is more practical and simple to implement. Simulation results also prove its validity. Applying this algorithm, we succeed in the control of the boiler level system in power units.展开更多
In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order t...In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.展开更多
The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear proce...The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear process dynamics relating to gain and time constant variations. The multi-model strategy was implemented on several controllers such as Smith-Predictor using PI (Proportional-lntegral) and GPC (Generalized Predictive Control). Computer simulations and experiments were conducted on several nonlinear systems and compared to the original form of these controllers. The enhanced approach was tested on controlling the screw speed of an injection molding machine and temperature of a steel cylinder.展开更多
基金Supported by the National High Technology Research and Development Program of China(2004AA412050)
文摘A finite horizon predictive control algorithm, which applies a saturated feedback control law as its local control law, is presented for nonlinear systems with time-delay subject to input constraints. In the algorithm, N free control moves, a saturated local control law and the terminal weighting matrices are solved by a minimization problem based on linear matrix inequality (LMI) constraints online. Compared with the algorithm with a nonsaturated local law, the presented algorithm improves the performances of the closed-loop systems such as feasibility and optimality. This model predictive control (MPC) algorithm is applied to an industrial continuous stirred tank reactor (CSTR) with explicit input constraint. The simulation results demonstrate that the presented algorithm is effective.
基金supported by The National High Technology Research and Development Program of China (2009AA044701)
文摘With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduces a simulation algorithm about a refinery based on virtual reality,and explains how the algorithm can be applied to the virtual refinery integrated simulation platform in detail.The virtual refinery simulation platform,which consists of a three-dimensional scene system,an integrated database system and a dynamic-static simulation system,has many applications,such as dynamic-static simulation of key process unit used as process control and oil tank blending simulation for scheduling.With the visualization and human-computer interaction for acquiring production and process data,this platform can provide effective supports on staff training related with monitoring,control and operation in refinery.Virtual refinery can also be web published through the internet and it is helpful for the distance training and education.
文摘The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is transformed into another form and the corresponding theorem is proved, then its applicable range is extended. Compared with other algorithms on the integral processes, this algorithm is more practical and simple to implement. Simulation results also prove its validity. Applying this algorithm, we succeed in the control of the boiler level system in power units.
基金Supported by the National Natural Science Foundation of China under Grant No.60974136
文摘In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.
文摘The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear process dynamics relating to gain and time constant variations. The multi-model strategy was implemented on several controllers such as Smith-Predictor using PI (Proportional-lntegral) and GPC (Generalized Predictive Control). Computer simulations and experiments were conducted on several nonlinear systems and compared to the original form of these controllers. The enhanced approach was tested on controlling the screw speed of an injection molding machine and temperature of a steel cylinder.