A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com...A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.展开更多
Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning pr...Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning principal component analysis(PPCA) method for process monitoring. A variable reasoning strategy is proposed and applied to recognize multiple fault variables. Compared with traditional process monitoring methods, the PPCA strategy not only reflects the local behavior of process variation in each model(each direction of principal components),but also improves the monitoring performance through the combination of local monitoring results. Then, a variable reasoning strategy is introduced to locate fault variables. Unlike the contribution plot, this method locates normal and fault variables effectively, and gives initiatory judgment for ambiguous variables. Finally, the effectiveness of the proposed process monitoring and fault variable identification schemes is verified through a numerical example and TE chemical process.展开更多
Traditional principal component analysis (PCA) is a second-order method and lacks the ability to provide higherorder representations for data variables. Recently, a statistics pattern analysis (SPA) framework has ...Traditional principal component analysis (PCA) is a second-order method and lacks the ability to provide higherorder representations for data variables. Recently, a statistics pattern analysis (SPA) framework has been incorporated into PCA model to make full use of various statistics of data variables effectively. However, these methods omit the local information, which is also important for process monitoring and fault diagnosis. In this paper, a local and global statistics pattern analysis (LGSPA) method, which integrates SPA framework and locality pre- serving projections within the PCK is proposed to utilize various statistics and preserve both local and global in- formation in the observed data. For the purpose of fault detection, two monitoring indices are constructed based on the LGSPA model. In order to identify fault variables, an improved reconstruction based contribution (IRBC) plot based on LGSPA model is proposed to locate fault variables. The RBC of various statistics of original process variables to the monitoring indices is calculated with the proposed RBC method. Based on the calculated RBC of process variables' statistics, a new contribution of process variables is built to locate fault variables. The simula- tion results on a simple six-variable system and a continuous stirred tank reactor system demonstrate that the proposed fault diagnosis method can effectively detect fault and distinguish the fault variables from normal variables.展开更多
Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-...Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.展开更多
In this research, a new fault detection method based on kernel independent component analysis (kernel ICA) is developed. Kernel ICA is an improvement of independent component analysis (ICA), and is different from ...In this research, a new fault detection method based on kernel independent component analysis (kernel ICA) is developed. Kernel ICA is an improvement of independent component analysis (ICA), and is different from kernel principal component analysis (KPCA) proposed for nonlinear process monitoring. The basic idea of our approach is to use the kernel ICA to extract independent components efficiently and to combine the selected essential independent components with process monitoring techniques. 12 (the sum of the squared independent scores) and squared prediction error (SPE) charts are adopted as statistical quantities. The proposed monitoring method is applied to Tennessee Eastman process, and the simulation results clearly show the advantages of kernel ICA monitoring in comparison to ICA monitoring.展开更多
This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,consi...This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,considering the variation of failure distribution in the existing models during testing time is limited.These SDE SRGMs assume that failures have the same distribution.However,in practice,the fault detection rate can be affected by some factors and may be changed at certain point as time proceeds.With respect to this issue,in this paper,SDE SRGMs with changepoint are proposed to precisely reflect the variations of the failure distribution.A real data set is used to evaluate the new models.The experimental results show that the proposed models have a fairly accurate prediction capability.展开更多
基金Supported by the National Natural Sciences Foundation of China (No. 50975213 and No. 50705070)Doctoral Fund for the New Teachers of Ministry of Education of China (No. 20070497029)the Program of Introducing Talents of Discipline to Universities (No. B08031)
文摘A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.
基金Supported by the National Natural Science Foundation of China(61374137,61490701,61174119)the State Key Laboratory of Integrated Automation of Process Industry Technology and Research Center of National Metallurgical Automation Fundamental Research Funds(2013ZCX02-03)
文摘Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning principal component analysis(PPCA) method for process monitoring. A variable reasoning strategy is proposed and applied to recognize multiple fault variables. Compared with traditional process monitoring methods, the PPCA strategy not only reflects the local behavior of process variation in each model(each direction of principal components),but also improves the monitoring performance through the combination of local monitoring results. Then, a variable reasoning strategy is introduced to locate fault variables. Unlike the contribution plot, this method locates normal and fault variables effectively, and gives initiatory judgment for ambiguous variables. Finally, the effectiveness of the proposed process monitoring and fault variable identification schemes is verified through a numerical example and TE chemical process.
基金Supported by the National Natural Science Foundation of China(61273160,61403418)the Natural Science Foundation of Shandong Province(ZR2014FL016)the Fundamental Research Funds for the Central Universities(14CX06132A)
文摘Traditional principal component analysis (PCA) is a second-order method and lacks the ability to provide higherorder representations for data variables. Recently, a statistics pattern analysis (SPA) framework has been incorporated into PCA model to make full use of various statistics of data variables effectively. However, these methods omit the local information, which is also important for process monitoring and fault diagnosis. In this paper, a local and global statistics pattern analysis (LGSPA) method, which integrates SPA framework and locality pre- serving projections within the PCK is proposed to utilize various statistics and preserve both local and global in- formation in the observed data. For the purpose of fault detection, two monitoring indices are constructed based on the LGSPA model. In order to identify fault variables, an improved reconstruction based contribution (IRBC) plot based on LGSPA model is proposed to locate fault variables. The RBC of various statistics of original process variables to the monitoring indices is calculated with the proposed RBC method. Based on the calculated RBC of process variables' statistics, a new contribution of process variables is built to locate fault variables. The simula- tion results on a simple six-variable system and a continuous stirred tank reactor system demonstrate that the proposed fault diagnosis method can effectively detect fault and distinguish the fault variables from normal variables.
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Natural Science Fund of Ningbo(2012A610001)
文摘Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.
基金Shanghai Leading Academic Discipline Project,China(No.B504) Key Laboratory of Advanced Control and Optimization for Chemical Processes,Ministry of Education,China
文摘In this research, a new fault detection method based on kernel independent component analysis (kernel ICA) is developed. Kernel ICA is an improvement of independent component analysis (ICA), and is different from kernel principal component analysis (KPCA) proposed for nonlinear process monitoring. The basic idea of our approach is to use the kernel ICA to extract independent components efficiently and to combine the selected essential independent components with process monitoring techniques. 12 (the sum of the squared independent scores) and squared prediction error (SPE) charts are adopted as statistical quantities. The proposed monitoring method is applied to Tennessee Eastman process, and the simulation results clearly show the advantages of kernel ICA monitoring in comparison to ICA monitoring.
基金Supported by the International Science&Technology Cooperation Program of China(No.2010DFA14400)the National Natural Science Foundation of China(No.60503015)the National High Technology Research and Development Programme of China(No.2008AA01A201)
文摘This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,considering the variation of failure distribution in the existing models during testing time is limited.These SDE SRGMs assume that failures have the same distribution.However,in practice,the fault detection rate can be affected by some factors and may be changed at certain point as time proceeds.With respect to this issue,in this paper,SDE SRGMs with changepoint are proposed to precisely reflect the variations of the failure distribution.A real data set is used to evaluate the new models.The experimental results show that the proposed models have a fairly accurate prediction capability.