This paper considers the distributed Kalman filtering fusion with passive packet loss or initiative intermittent communications from local estimators to fusion center while the process noise does exist. When the local...This paper considers the distributed Kalman filtering fusion with passive packet loss or initiative intermittent communications from local estimators to fusion center while the process noise does exist. When the local estimates are not lost too much, the authors propose an optimal distributed fusion algorithm which is equivalent to the corresponding centralized Kalman filtering fusion with complete communications even if the process noise does exist. When this condition is not satisfied, based on the above global optimality result and sensor data compression, the authors propose a suboptimal distributed fusion algorithm. Numerical examples show that this suboptimal algorithm still works well and significantly better than the standard distributed Kalman filtering fusion subject to packet loss even if the process noise power is quite large.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.60934009, 60901037 and 61004138
文摘This paper considers the distributed Kalman filtering fusion with passive packet loss or initiative intermittent communications from local estimators to fusion center while the process noise does exist. When the local estimates are not lost too much, the authors propose an optimal distributed fusion algorithm which is equivalent to the corresponding centralized Kalman filtering fusion with complete communications even if the process noise does exist. When this condition is not satisfied, based on the above global optimality result and sensor data compression, the authors propose a suboptimal distributed fusion algorithm. Numerical examples show that this suboptimal algorithm still works well and significantly better than the standard distributed Kalman filtering fusion subject to packet loss even if the process noise power is quite large.