Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a software e...Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a software environment that can automate the validation activity. This paper is concentrated on the pretreatment of the model validation. We use the validation scenarios and standard sequences generated by well-established SDG model to validate the trends fitted from the simulation model. The results are helpful to find potential problems, assess possible bugs in the simulation model and solve the problem effectively. A case study on a simulation model of boiler is presented to demonstrate the effectiveness of this method.展开更多
The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inver...The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inverted triangular profiles was designed, and the Green-Ampt model was employed for the process simulation. The results indicate that(1) the wetting front in coarse texture soils transports faster than in fine texture soils;(2) for the homogeneous case, the wetting front in triangularshaped soils transports faster than the inverted triangular type, but the triangular-shaped soils show a lower infiltration rate;(3) in the initial step, the wetting front in triangular-shaped soils shows higher transport speed, but depicts lower speed with increase in the time;(4) both the wetting front and infiltration rate show a significant exponential relation with the time. From these findings, an empirical model was developed which agrees well with the observed data and provides a useful method for this field of soil research.展开更多
Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the eq...Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.展开更多
Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.0...Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.041 m id,packed with spherical activated carbon up to a length of 0.2 m). With the Reynolds mass flux model,breakthrough/regeneration curves, concentration and temperature as well as the velocity distributions can be obtained. The simulated results are compared with the experimental data reported in the literature and satisfactory agreement is found both in breakthrough/regeneration curves and temperature curves. Moreover,the anisotropic turbulent mass diffusion is characterized and discussed.展开更多
This study presents three kinds of skid-mounted plants, including single mixed refrigerant cycle (MRC), nitrogen expander cycle, and natural gas (NG) Claude cycle. Hysys simulation shows that single MRC is the mos...This study presents three kinds of skid-mounted plants, including single mixed refrigerant cycle (MRC), nitrogen expander cycle, and natural gas (NG) Claude cycle. Hysys simulation shows that single MRC is the most efficient cycle among the three. The specific power of single MRC liquefiers is 1 485 k.l/kg, 15% higher than that of large liquefaction process. Considering the recovery of stranded-gas, commercial analysis suggests that the initial cost of LNG plants ranging from 1 to 100 ms/day can be paid back in 2 to 4 years.展开更多
A mathematical model of nitrogen oxide (NOx) absorption is adopted and solved for adiabatic operation of a column with structured packings on the basis of the film theory. Removal rate, outlet concentration, oxidati...A mathematical model of nitrogen oxide (NOx) absorption is adopted and solved for adiabatic operation of a column with structured packings on the basis of the film theory. Removal rate, outlet concentration, oxidation degree of NOx and outlet acid concentration, liquid acid temperature are simulated and tested. The gas phase reactions and equilibria, gas phase mass transfer, interracial equilibria, and liquid phase reactions are considered in the model. Absorption of nitrogen oxides is studied in packed with Mellapak 250Y columns in series in an industrial process of 20000 t oxalic acid per year. Favorable agreement is shown between the model predictions and the on-site observations.展开更多
The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Tw...The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Two pairs of experiments were made, spectral nudging (SP) and non-spectral nudging (NOSP), with five members in each group. The members were distinguished by different initial times, and the analysis was based on the ensemble mean of the two simulation pairs. The SP was able to constrain error growth in large-scale circulation in upper-level, during simulation, and generate realistic regional scale patterns. The main focus was the model ability to simulate precipitation. The Tropical Rainfall Measuring Mission (TRMM) 3B42 product was used for precipitation verification. Mean precipitation magnitude was generally overestimated by WRF. Nevertheless, SP simulations suppressed overestimation relative to the NOSP experiments. Compared to TRMM, SP also improved model simulation of precipitation in spatial and temporal distributions, with the ability to reproduce movement of rainbands. However, extreme precipitation events were suppressed in the SP simulations.展开更多
A new model for describing the compaction process of iron powder was proposed based on the continuum hypothesis and elliptical yield criterion.To simulate the densification behaviour,the constitutive model was impleme...A new model for describing the compaction process of iron powder was proposed based on the continuum hypothesis and elliptical yield criterion.To simulate the densification behaviour,the constitutive model was implemented in Marc computer program.For the relationship between load and displacement,different models were compared and the influence of the parameters in the constitutive equations was determined by means of simulation and experiments.The density distribution of a balancer was measured and simulated.The results show that the parameterηadopted plays a modification role for the load-displacement curve,and compared with other models the present model fits better with the experimental data in the later stage of the compaction process mainly due to the different parameters A and B.The friction on the contact surface contributes to the inhomogeneous density distribution under large deformation of the workpiece.The comparison between the simulation and experimental data indicates that this model can be used to predict the powder compact process precisely and effectively.展开更多
Debris flows have caused serious human casualties and economic losses in the regions strongly affected by the Ms8.0 Wenchuan earthquake of 2oo8. Debris flow mitigation and risk assessment is a key issue for reconstruc...Debris flows have caused serious human casualties and economic losses in the regions strongly affected by the Ms8.0 Wenchuan earthquake of 2oo8. Debris flow mitigation and risk assessment is a key issue for reconstruction. The existing methods of inundation simulation are based on historical disasters and have no power of prediction. The rain- flood method can not yield detailed flow hydrograph and does not meet the need of inundation simulation. In this paper, the process of water flow was studied by using the Arc-SCS model combined with hydraulic method, and then the debris flow runoff process was calculated using the empirical formula combining the result from Arc-SCS. The peak discharge and runoff duration served as input of inundation simulation. Then, the dangerous area is predicted using kinematic wave method and Manning equation. Taking the debris flow in Huashiban gully in Beichuan County, Sichuan Province, China on 24 Sep. 2oo8 as example, the peak discharge of water flow and debris flow were calculated as 35.52 m3·s-1 and 215.66 m3·s-, with error of 4.15% compared to the measured values. The simulated area of debris-flow deposition was 161,500 m2, vs. the measured area of 144,097 m2, in error of 81.75%. The simulated maximum depth was 12.3 m, consistent with the real maximum depth between lO and 15 m according to the field survey. The minor error is mainly due to the flow impact on buildings and variations in cross-section configuration. The present methodology can be applied to predict debrisflow magnitude and evaluate its risk in other watersheds inthe earthquake area.展开更多
Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model....Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model.With the RMF model, the concentration and temperature as well as the velocity distributions can be simulated numerically. The modeled Reynolds mass flux equation is adopted to close the turbulent mass transfer equation,while the modeled Reynolds heat flux and Reynolds stress equations are used to close the turbulent heat and momentum transfer equations, so that the Boussinesq postulate and the isotropic assumption are abandoned. To validate the presented RMF model, simulation is carried out for CO2 absorption into aqueous Na OH solutions in a packed column(0.1 m id, packed with 12.7 mm Berl saddles up to a height of 6.55 m). The simulated results are compared with the experimental data and satisfactory agreement is found both in concentration and temperature distributions. The sequel Part II extends the model application to the simulation of an unsteady state adsorption process in a packed column.展开更多
The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the ...The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly.展开更多
The general mathematical model for batch cooling crystallization was established based on the population balance equation considering the change of slurry volume, and simulated with crystallization thermodynamics,kine...The general mathematical model for batch cooling crystallization was established based on the population balance equation considering the change of slurry volume, and simulated with crystallization thermodynamics,kinetics and mass balance employing bed voidage. In the system of vitamin C-water-ethanol, reliability of this model was verified by comparison between simulation results and experimental data. The effects of operation parameters on product quality can be systematically investigated by modeling simulation.展开更多
The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by us...The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by using a high speed video camera (HSVC). A numerical model was developed using the Marker and Cell Method, which involves a Subgrid-Scale (SGS) model and the Particle Source in Cell (PSI-Cell) Method. The transportation processes of debris and air bubble were simulated in lagrangian form by introducing air bubbles and debris markers. Air bubble movement characteristics were simulated by this numerical model. Bigger particles flow at the upper part, while smaller particles attach near to the bottom. This phenomenon is similar to what we observed in the experimental studies. As a conclusion, the calibration processes for velocity was successful. The value of virtual mass (CM) was found to be one of the most important criteria that should be considered in the calibration process, as this parameter dominates fundamental characteristics of sediment particle movement in the lagrangian numerical scheme. The best fitted CM in this study was 0.35. The mean average velocity value ranging from 1.2% to 22.61% is obtained from the velocity results of numerical studies compared to the experimental studies.展开更多
To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that...To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that the recession rate of soil water is proportional to the potential evapotranspiration rate and the difference of soil water content and steady soil water content. Two parameters in this model are soil texture-dependent recession constant and steady soil water content. The model was calibrated and validated with measured soil water data at two experiment sites in North China with different soil textures and cropping systems. Coefficients of determination between measured and model simulated soil water content were all greater than 0.7, indicating that both models gave satisfactory simulation results. Results showed that values of two parameters mentioned above are both larger for finer soil than those for coarser soil. At the same potential evapotranspiration rate and soil water content, the recession rate of finer soil is usually lower than that of coarser soil. The proposed model can be used in irrigation management to predict approximate date for irrigation, as well as be embedded into watershed hydrological models to estimate the antecedent precipitation index.展开更多
A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR rean...A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.展开更多
文摘Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a software environment that can automate the validation activity. This paper is concentrated on the pretreatment of the model validation. We use the validation scenarios and standard sequences generated by well-established SDG model to validate the trends fitted from the simulation model. The results are helpful to find potential problems, assess possible bugs in the simulation model and solve the problem effectively. A case study on a simulation model of boiler is presented to demonstrate the effectiveness of this method.
基金supported by the National Natural Science Foundation of China (Grant No. 41201268)
文摘The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inverted triangular profiles was designed, and the Green-Ampt model was employed for the process simulation. The results indicate that(1) the wetting front in coarse texture soils transports faster than in fine texture soils;(2) for the homogeneous case, the wetting front in triangularshaped soils transports faster than the inverted triangular type, but the triangular-shaped soils show a lower infiltration rate;(3) in the initial step, the wetting front in triangular-shaped soils shows higher transport speed, but depicts lower speed with increase in the time;(4) both the wetting front and infiltration rate show a significant exponential relation with the time. From these findings, an empirical model was developed which agrees well with the observed data and provides a useful method for this field of soil research.
基金Supported by the National Natural Science Foundation of China(61072127) the Outstanding Young Innovative Personnel Project of Guangdong Colleges(LYM08098)
文摘Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.
基金Supported by the National Natural Science Foundation of China(21376163)
文摘Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.041 m id,packed with spherical activated carbon up to a length of 0.2 m). With the Reynolds mass flux model,breakthrough/regeneration curves, concentration and temperature as well as the velocity distributions can be obtained. The simulated results are compared with the experimental data reported in the literature and satisfactory agreement is found both in breakthrough/regeneration curves and temperature curves. Moreover,the anisotropic turbulent mass diffusion is characterized and discussed.
文摘This study presents three kinds of skid-mounted plants, including single mixed refrigerant cycle (MRC), nitrogen expander cycle, and natural gas (NG) Claude cycle. Hysys simulation shows that single MRC is the most efficient cycle among the three. The specific power of single MRC liquefiers is 1 485 k.l/kg, 15% higher than that of large liquefaction process. Considering the recovery of stranded-gas, commercial analysis suggests that the initial cost of LNG plants ranging from 1 to 100 ms/day can be paid back in 2 to 4 years.
文摘A mathematical model of nitrogen oxide (NOx) absorption is adopted and solved for adiabatic operation of a column with structured packings on the basis of the film theory. Removal rate, outlet concentration, oxidation degree of NOx and outlet acid concentration, liquid acid temperature are simulated and tested. The gas phase reactions and equilibria, gas phase mass transfer, interracial equilibria, and liquid phase reactions are considered in the model. Absorption of nitrogen oxides is studied in packed with Mellapak 250Y columns in series in an industrial process of 20000 t oxalic acid per year. Favorable agreement is shown between the model predictions and the on-site observations.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Two pairs of experiments were made, spectral nudging (SP) and non-spectral nudging (NOSP), with five members in each group. The members were distinguished by different initial times, and the analysis was based on the ensemble mean of the two simulation pairs. The SP was able to constrain error growth in large-scale circulation in upper-level, during simulation, and generate realistic regional scale patterns. The main focus was the model ability to simulate precipitation. The Tropical Rainfall Measuring Mission (TRMM) 3B42 product was used for precipitation verification. Mean precipitation magnitude was generally overestimated by WRF. Nevertheless, SP simulations suppressed overestimation relative to the NOSP experiments. Compared to TRMM, SP also improved model simulation of precipitation in spatial and temporal distributions, with the ability to reproduce movement of rainbands. However, extreme precipitation events were suppressed in the SP simulations.
基金Project(50325516) supported by the National Natural Science Foundation of ChinaProject(CG2003-GA005) supported by China Education and Research Grid(China Grid)+1 种基金Project(003019) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2009ZM0290) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new model for describing the compaction process of iron powder was proposed based on the continuum hypothesis and elliptical yield criterion.To simulate the densification behaviour,the constitutive model was implemented in Marc computer program.For the relationship between load and displacement,different models were compared and the influence of the parameters in the constitutive equations was determined by means of simulation and experiments.The density distribution of a balancer was measured and simulated.The results show that the parameterηadopted plays a modification role for the load-displacement curve,and compared with other models the present model fits better with the experimental data in the later stage of the compaction process mainly due to the different parameters A and B.The friction on the contact surface contributes to the inhomogeneous density distribution under large deformation of the workpiece.The comparison between the simulation and experimental data indicates that this model can be used to predict the powder compact process precisely and effectively.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2011CB409902)the National Natural Sciences Foundation of China(Grant No. 40671025)
文摘Debris flows have caused serious human casualties and economic losses in the regions strongly affected by the Ms8.0 Wenchuan earthquake of 2oo8. Debris flow mitigation and risk assessment is a key issue for reconstruction. The existing methods of inundation simulation are based on historical disasters and have no power of prediction. The rain- flood method can not yield detailed flow hydrograph and does not meet the need of inundation simulation. In this paper, the process of water flow was studied by using the Arc-SCS model combined with hydraulic method, and then the debris flow runoff process was calculated using the empirical formula combining the result from Arc-SCS. The peak discharge and runoff duration served as input of inundation simulation. Then, the dangerous area is predicted using kinematic wave method and Manning equation. Taking the debris flow in Huashiban gully in Beichuan County, Sichuan Province, China on 24 Sep. 2oo8 as example, the peak discharge of water flow and debris flow were calculated as 35.52 m3·s-1 and 215.66 m3·s-, with error of 4.15% compared to the measured values. The simulated area of debris-flow deposition was 161,500 m2, vs. the measured area of 144,097 m2, in error of 81.75%. The simulated maximum depth was 12.3 m, consistent with the real maximum depth between lO and 15 m according to the field survey. The minor error is mainly due to the flow impact on buildings and variations in cross-section configuration. The present methodology can be applied to predict debrisflow magnitude and evaluate its risk in other watersheds inthe earthquake area.
基金Supported by the National Natural Science Foundation of China(21376163)
文摘Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model.With the RMF model, the concentration and temperature as well as the velocity distributions can be simulated numerically. The modeled Reynolds mass flux equation is adopted to close the turbulent mass transfer equation,while the modeled Reynolds heat flux and Reynolds stress equations are used to close the turbulent heat and momentum transfer equations, so that the Boussinesq postulate and the isotropic assumption are abandoned. To validate the presented RMF model, simulation is carried out for CO2 absorption into aqueous Na OH solutions in a packed column(0.1 m id, packed with 12.7 mm Berl saddles up to a height of 6.55 m). The simulated results are compared with the experimental data and satisfactory agreement is found both in concentration and temperature distributions. The sequel Part II extends the model application to the simulation of an unsteady state adsorption process in a packed column.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly.
文摘The general mathematical model for batch cooling crystallization was established based on the population balance equation considering the change of slurry volume, and simulated with crystallization thermodynamics,kinetics and mass balance employing bed voidage. In the system of vitamin C-water-ethanol, reliability of this model was verified by comparison between simulation results and experimental data. The effects of operation parameters on product quality can be systematically investigated by modeling simulation.
文摘The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by using a high speed video camera (HSVC). A numerical model was developed using the Marker and Cell Method, which involves a Subgrid-Scale (SGS) model and the Particle Source in Cell (PSI-Cell) Method. The transportation processes of debris and air bubble were simulated in lagrangian form by introducing air bubbles and debris markers. Air bubble movement characteristics were simulated by this numerical model. Bigger particles flow at the upper part, while smaller particles attach near to the bottom. This phenomenon is similar to what we observed in the experimental studies. As a conclusion, the calibration processes for velocity was successful. The value of virtual mass (CM) was found to be one of the most important criteria that should be considered in the calibration process, as this parameter dominates fundamental characteristics of sediment particle movement in the lagrangian numerical scheme. The best fitted CM in this study was 0.35. The mean average velocity value ranging from 1.2% to 22.61% is obtained from the velocity results of numerical studies compared to the experimental studies.
基金Under the auspices of National Natural Science Foundation of China(No.51279077,91125017)
文摘To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that the recession rate of soil water is proportional to the potential evapotranspiration rate and the difference of soil water content and steady soil water content. Two parameters in this model are soil texture-dependent recession constant and steady soil water content. The model was calibrated and validated with measured soil water data at two experiment sites in North China with different soil textures and cropping systems. Coefficients of determination between measured and model simulated soil water content were all greater than 0.7, indicating that both models gave satisfactory simulation results. Results showed that values of two parameters mentioned above are both larger for finer soil than those for coarser soil. At the same potential evapotranspiration rate and soil water content, the recession rate of finer soil is usually lower than that of coarser soil. The proposed model can be used in irrigation management to predict approximate date for irrigation, as well as be embedded into watershed hydrological models to estimate the antecedent precipitation index.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110202)the National Natural Science Foundation of China (Grant Nos. 41175073, 41471016, and U1133603)
文摘A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.