The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was c...The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was carded out in a reaction system at a pressure of 26MPa, temperature of 380℃ or 400℃ for 30min, 70min, and 120min by Course One (the increasing course of temperature and pressure is via gaseous regions to supercritical regions), and the other group was carried out at corresponding holding conditions by Course Two (the increasing course of temperature and pressure is via liquid regions to supercritical regions). The time of the increasing courses was about 30min. Products were analyzed by Ostward-type viscometer, gaseous chromatography, and mass spectrometers (GC/MS). Characterization results suggested that different increasing courses of temperature and pressure would give rise to different results, although they were treated under the similar holding conditions. It was also found that Course Two was more effective on PP degradation in supercritical water.展开更多
In this study,effects of elevated air temperatures on thermal and hydrologic process of the shallow soil in the active layer were investigated. Open-top chambers(OTCs)were utilized to increase air temperatures 1-2℃ i...In this study,effects of elevated air temperatures on thermal and hydrologic process of the shallow soil in the active layer were investigated. Open-top chambers(OTCs)were utilized to increase air temperatures 1-2℃ in OTC-1 and 3-5℃ in OTC-2 in the alpine meadow ecosystem on the Qinghai- Tibetan Plateau.Results show that the annual air temperatures under OTC-1 and OTC-2 were 1.21℃ and 3.62℃ higher than the Control,respectively.The entirely-frozen period of shallow soil in the active layer was shortened and the fully thawed period was prolonged with temperature increase.The maximum penetration depth and duration of the negative isotherm during the entirely-frozen period decreased, and soil freezing was retarded in the local scope of the soil profile when temperature increased.Meanwhile, the positive isotherm during the fully-thawed period increased,and the soil thawing was accelerated.Soil moisture under different manipulations decreased with the temperature increase at the same depth. During the early freezing period and the early fully- thawed period,the maximum soil moisture under the Control manipulation was at 0.2 m deep,whereas under OTC-1 and OTC-2 manipulations,the maximum soil moisture were at 0.4-0.5 m deep. These results indicate that elevated temperatures led to a decrease of the moisture in the surface soil.The coupled relationship between soil temperature and moisture was significantly affected by the temperature increase.During the freezing and thawing processes, the soil temperature and moisture under different manipulations fit the regression model given by the equationθV=a/{1+exp[b(TS+c)]}+d.展开更多
The 2015/2016 El Nio was one of the strongest El Nio events in history, and this strong event was preceded by a weak El Nio in 2014. This study systematically analyzed the dynamical processes responsible for the genes...The 2015/2016 El Nio was one of the strongest El Nio events in history, and this strong event was preceded by a weak El Nio in 2014. This study systematically analyzed the dynamical processes responsible for the genesis of these events. It was found that the weak 2014 El Nio had two warming phases, the spring-summer warming was produced by zonal advection and downwelling Kelvin waves driven by westerly wind bursts(WWBs), and the autumn-winter warming was produced by meridional advection, surface heating as well as downwelling Kelvin waves. The 2015/2016 extreme El Nio, on the other hand, was primarily a result of sustained zonal advection and downwelling Kelvin waves driven by a series of WWBs, with enhancement from the Bjerknes positive feedback. The vast difference between these two El Nio events mainly came from the different amount of WWBs in 2014 and 2015. As compared to the 1982/1983 and 1997/1998 extreme El Nio events, the 2015/2016 El Nio exhibited some distinctive characteristics in its genesis and spatial pattern. We need to include the effects of WWBs to the theoretical framework of El Nio to explain these characteristics, and to improve our understanding and prediction of El Nio.展开更多
Adsorption and reaction of CO and CO2 were studied on oxygen-covered Au(997) surfaces by means of temperature- programmed desorption/reaction spectroscopy. Oxygen atoms (O(a)) on Au(997) enhances the CO2 adsor...Adsorption and reaction of CO and CO2 were studied on oxygen-covered Au(997) surfaces by means of temperature- programmed desorption/reaction spectroscopy. Oxygen atoms (O(a)) on Au(997) enhances the CO2 adsorption and stabilizes the adsorbed COe(a), and the stabilization effect also depends on the CO2(a) coverage and involved Au sites. CO2(a) desorp- tion is the rate-limiting step for the CO+O(a) reaction to produce CO2 on Au(997) at 105 K and exhibits complex behaviors, including the desorption of CO2(a) upon CO exposures at 105 K and the desorption of O(a)-stabilized CO2(a) at elevated temperatures. The desorption of CO2(a) from the surface upon CO exposures at 105 K to produce gaseous CO2 depends on the surface reaction extent and involves the reaction heat-driven CO2(a) desorption channel. CO+O(a) reaction proceeds more easily with weakly-bound oxygen adatoms at the (111) terraces than strongly-bound oxygen adatoms at the (111) steps. These re- sults reveal complex rate-limiting COe(a) desorption behaviors during CO+O(a) reaction on Au surfaces at low temperatures which provide novel information on the fundamental understanding of Au catalysis.展开更多
Bilayer graphene(BLG)shows great application prospect and potential in next-generation electronics because of its unique electrical and mechanical properties.However,the scalable synthesis of large-area high-quality B...Bilayer graphene(BLG)shows great application prospect and potential in next-generation electronics because of its unique electrical and mechanical properties.However,the scalable synthesis of large-area high-quality BLG films is still a great challenge,despite the maturity of chemical vapor deposition(CVD)technique.In this study,we report a robust method to grow BLGs on flat,softened Cu foils by atmospheric pressure CVD.A moderate amount of residual oxygen accelerates the growth of BLG domains while suppressing the formation of multilayers.Raising the nucleation density at low hydrogen pressure efficiently increases the film continuity.Based on the optimized CVD process,the growth of graphene films on 4×4 cm^2 Cu foils with an average BLG coverage of 76%is achieved.The morphology and structure characterizations demonstrate a high quality of the BLG.Dual gate field-effect transistors are investigated based on AB-stacked BLG,with a tunable bandgap and high carrier mobility of up to 6790 cm2 V^−1 s^−1 at room temperature.展开更多
基金Supported by the National Natural Science Foundation of China (No.59972022) and the 0pening Foundation of the Environmental Engineering Key Discipline, Zhejiang University of Technology (No.56310503011).
文摘The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was carded out in a reaction system at a pressure of 26MPa, temperature of 380℃ or 400℃ for 30min, 70min, and 120min by Course One (the increasing course of temperature and pressure is via gaseous regions to supercritical regions), and the other group was carried out at corresponding holding conditions by Course Two (the increasing course of temperature and pressure is via liquid regions to supercritical regions). The time of the increasing courses was about 30min. Products were analyzed by Ostward-type viscometer, gaseous chromatography, and mass spectrometers (GC/MS). Characterization results suggested that different increasing courses of temperature and pressure would give rise to different results, although they were treated under the similar holding conditions. It was also found that Course Two was more effective on PP degradation in supercritical water.
基金founded by The National Science Foundation of China(No.40730634 andNo.40925002)
文摘In this study,effects of elevated air temperatures on thermal and hydrologic process of the shallow soil in the active layer were investigated. Open-top chambers(OTCs)were utilized to increase air temperatures 1-2℃ in OTC-1 and 3-5℃ in OTC-2 in the alpine meadow ecosystem on the Qinghai- Tibetan Plateau.Results show that the annual air temperatures under OTC-1 and OTC-2 were 1.21℃ and 3.62℃ higher than the Control,respectively.The entirely-frozen period of shallow soil in the active layer was shortened and the fully thawed period was prolonged with temperature increase.The maximum penetration depth and duration of the negative isotherm during the entirely-frozen period decreased, and soil freezing was retarded in the local scope of the soil profile when temperature increased.Meanwhile, the positive isotherm during the fully-thawed period increased,and the soil thawing was accelerated.Soil moisture under different manipulations decreased with the temperature increase at the same depth. During the early freezing period and the early fully- thawed period,the maximum soil moisture under the Control manipulation was at 0.2 m deep,whereas under OTC-1 and OTC-2 manipulations,the maximum soil moisture were at 0.4-0.5 m deep. These results indicate that elevated temperatures led to a decrease of the moisture in the surface soil.The coupled relationship between soil temperature and moisture was significantly affected by the temperature increase.During the freezing and thawing processes, the soil temperature and moisture under different manipulations fit the regression model given by the equationθV=a/{1+exp[b(TS+c)]}+d.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41690121, 41690124, 41690120, 41506025 & 41621064)the National Program on Global Change and Air-Sea Interaction (Grant Nos. GASI-IPOVAI-04 & GASI-IPOVAI-06)the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ15D060004)
文摘The 2015/2016 El Nio was one of the strongest El Nio events in history, and this strong event was preceded by a weak El Nio in 2014. This study systematically analyzed the dynamical processes responsible for the genesis of these events. It was found that the weak 2014 El Nio had two warming phases, the spring-summer warming was produced by zonal advection and downwelling Kelvin waves driven by westerly wind bursts(WWBs), and the autumn-winter warming was produced by meridional advection, surface heating as well as downwelling Kelvin waves. The 2015/2016 extreme El Nio, on the other hand, was primarily a result of sustained zonal advection and downwelling Kelvin waves driven by a series of WWBs, with enhancement from the Bjerknes positive feedback. The vast difference between these two El Nio events mainly came from the different amount of WWBs in 2014 and 2015. As compared to the 1982/1983 and 1997/1998 extreme El Nio events, the 2015/2016 El Nio exhibited some distinctive characteristics in its genesis and spatial pattern. We need to include the effects of WWBs to the theoretical framework of El Nio to explain these characteristics, and to improve our understanding and prediction of El Nio.
基金supported by the National Basic Research Program of China (2013CB933104)National Natural Science Foundation of China (20973161, 21373192)+1 种基金Ministry of Education Fundamental Research Funds for the Central Universities (WK2060030017)Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Adsorption and reaction of CO and CO2 were studied on oxygen-covered Au(997) surfaces by means of temperature- programmed desorption/reaction spectroscopy. Oxygen atoms (O(a)) on Au(997) enhances the CO2 adsorption and stabilizes the adsorbed COe(a), and the stabilization effect also depends on the CO2(a) coverage and involved Au sites. CO2(a) desorp- tion is the rate-limiting step for the CO+O(a) reaction to produce CO2 on Au(997) at 105 K and exhibits complex behaviors, including the desorption of CO2(a) upon CO exposures at 105 K and the desorption of O(a)-stabilized CO2(a) at elevated temperatures. The desorption of CO2(a) from the surface upon CO exposures at 105 K to produce gaseous CO2 depends on the surface reaction extent and involves the reaction heat-driven CO2(a) desorption channel. CO+O(a) reaction proceeds more easily with weakly-bound oxygen adatoms at the (111) terraces than strongly-bound oxygen adatoms at the (111) steps. These re- sults reveal complex rate-limiting COe(a) desorption behaviors during CO+O(a) reaction on Au surfaces at low temperatures which provide novel information on the fundamental understanding of Au catalysis.
基金This work was supported by China Postdoctoral Science Foundation(2018M642831)Shenzhen Science and Technology Project(JCYJ20180507183904841).
文摘Bilayer graphene(BLG)shows great application prospect and potential in next-generation electronics because of its unique electrical and mechanical properties.However,the scalable synthesis of large-area high-quality BLG films is still a great challenge,despite the maturity of chemical vapor deposition(CVD)technique.In this study,we report a robust method to grow BLGs on flat,softened Cu foils by atmospheric pressure CVD.A moderate amount of residual oxygen accelerates the growth of BLG domains while suppressing the formation of multilayers.Raising the nucleation density at low hydrogen pressure efficiently increases the film continuity.Based on the optimized CVD process,the growth of graphene films on 4×4 cm^2 Cu foils with an average BLG coverage of 76%is achieved.The morphology and structure characterizations demonstrate a high quality of the BLG.Dual gate field-effect transistors are investigated based on AB-stacked BLG,with a tunable bandgap and high carrier mobility of up to 6790 cm2 V^−1 s^−1 at room temperature.