Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them conside...Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.展开更多
The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up ...The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870℃ ha both N2 and CO2 atmospheres, while further mass loss occurred ha CO2 atmosphere at higher temper- atures due to char-CO2 gasification. Replacement of N2 ha the combustion environment by CO2 delayed the com- bustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.展开更多
基金Supported by Guangzhou Nansha District Bureau of Economy & Trade, Science & Technology, Information, Project (201103003)the Fundamental Research Funds for the Central Universities (2012QNA5012)+1 种基金Project of Education Department of Zhejiang Province (Y201223159)Technology Foundation for Selected Overseas Chinese Scholar of Zhejiang Province (J20120561)
文摘Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.
基金financially supported by the National Science Centre(Poland)under grant No.N N512 457940the Ministry of Science and Higher Education(Poland)under the statutory funds(BS-1-103-3020/2016)
文摘The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870℃ ha both N2 and CO2 atmospheres, while further mass loss occurred ha CO2 atmosphere at higher temper- atures due to char-CO2 gasification. Replacement of N2 ha the combustion environment by CO2 delayed the com- bustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.