For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used ...For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used for dynamic process optimization.A new strategy is proposed for complex process optimization,in which latent variables are used as decision variables and statistics is used to describe constraints.As the constraint condition will be more complex by projecting the original variable to latent space,Hotelling T^2 statistics is introduced for constraint formulation in latent space.In this way,the constraint is simplified when the optimization is solved in low-dimensional space of latent variable.The validity of the methodology is illustrated in pH-level optimal control process and practical polypropylene grade transition process.展开更多
This paper studies denumerable continuous-time Markov decision processes with expected total reward criteria. The authors first study the unconstrained model with possible unbounded transition rates, and give suitable...This paper studies denumerable continuous-time Markov decision processes with expected total reward criteria. The authors first study the unconstrained model with possible unbounded transition rates, and give suitable conditions on the controlled system's primitive data under which the authors show the existence of a solution to the total reward optimality equation and also the existence of an optimal stationary policy. Then, the authors impose a constraint on an expected total cost, and consider the associated constrained model. Basing on the results about the unconstrained model and using the Lagrange multipliers approach, the authors prove the existence of constrained-optimal policies under some additional conditions. Finally, the authors apply the results to controlled queueing systems.展开更多
基金Supported by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)+1 种基金the Natural Science Foundation of Zhejiang Province(LQ15F030006)the Educational Commission Research Program of Zhejiang Province(Y201431412)
文摘For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used for dynamic process optimization.A new strategy is proposed for complex process optimization,in which latent variables are used as decision variables and statistics is used to describe constraints.As the constraint condition will be more complex by projecting the original variable to latent space,Hotelling T^2 statistics is introduced for constraint formulation in latent space.In this way,the constraint is simplified when the optimization is solved in low-dimensional space of latent variable.The validity of the methodology is illustrated in pH-level optimal control process and practical polypropylene grade transition process.
基金supported by the National Natural Science Foundation of China under Grant Nos.10925107 and 60874004
文摘This paper studies denumerable continuous-time Markov decision processes with expected total reward criteria. The authors first study the unconstrained model with possible unbounded transition rates, and give suitable conditions on the controlled system's primitive data under which the authors show the existence of a solution to the total reward optimality equation and also the existence of an optimal stationary policy. Then, the authors impose a constraint on an expected total cost, and consider the associated constrained model. Basing on the results about the unconstrained model and using the Lagrange multipliers approach, the authors prove the existence of constrained-optimal policies under some additional conditions. Finally, the authors apply the results to controlled queueing systems.