A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion.Firstly,a potential-based boundary-element method was used to calculate the hydrodynamic pressure,induce...A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion.Firstly,a potential-based boundary-element method was used to calculate the hydrodynamic pressure,induced resistance and lift.Then the frictional resistance component was determined by the viscous boundary layer theory.Finally,a particular empirical technique was applied.to determine the region of upwash geometry and determine spray resistance.Case studies involving four models of Series 62 planing craft were run.These showed that the suggested method is efficient and capable,with results that are in good agreement with experimental measurements over a wide range of volumetric Froude numbers.展开更多
We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.
In many parts of the global plates,including subduction zones,mid-ocean ridges and even the interior of the continental plates,seismic anisotropy has a certain correlation with image of absolute plate motion( APM),or ...In many parts of the global plates,including subduction zones,mid-ocean ridges and even the interior of the continental plates,seismic anisotropy has a certain correlation with image of absolute plate motion( APM),or is in accord with the predominant direction of the intraplate stress field. In our study,a statistical analysis is done on the correlations of plate motion with seismic anisotropy as well as a stress field within nine plate boundaries which contain major subduction zones in the globe. Results indicate that absolute or relative plate motion( RPM) controls the seismic anisotropy and stress field of the plate boundary,which is especially obvious for the RPM. It can also be inferred that the correlation of RPM is better than that of APM. Because of the complexity of subduction mechanism and diversity of controlling factors at plate boundaries containing subduction zones,the correlation becomes much complex. Sources of anisotropy at various depths show different characteristics,and stress state is controlled by many factors,thus further discussions on the correlations are required.展开更多
We investigated the effects of oxygen vacancies on the structural, magnetic, and transport properties of Lal-xSrxMnO3 (x=0.1, 0.2, 0.33, 0.4, and 0.5) grown around a critical point (without/with oxygen vacancies) ...We investigated the effects of oxygen vacancies on the structural, magnetic, and transport properties of Lal-xSrxMnO3 (x=0.1, 0.2, 0.33, 0.4, and 0.5) grown around a critical point (without/with oxygen vacancies) under low oxygen pressure (10 Pa) and high oxygen pressure (40 Pa). We found that all films exhibit ferromagnetic behavior below the magnetic critical temperature, and that the films grown under low oxygen pressures have degraded magnetic properties with lower Curie temperatures and smaller magnetic moments. These results show that in epitaxial La1-xSrxMnO3 thin films, the magnetic and transport properties are very sensitive to doping concentration and oxygen vacancies. Phase diagrams of the films based on the doping concentration and oxygen vacancies were plotted and discussed.展开更多
文摘A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion.Firstly,a potential-based boundary-element method was used to calculate the hydrodynamic pressure,induced resistance and lift.Then the frictional resistance component was determined by the viscous boundary layer theory.Finally,a particular empirical technique was applied.to determine the region of upwash geometry and determine spray resistance.Case studies involving four models of Series 62 planing craft were run.These showed that the suggested method is efficient and capable,with results that are in good agreement with experimental measurements over a wide range of volumetric Froude numbers.
基金supported by National Natural Science of Foundation of China under Grant No.10375009)SRF for ROCS,SEM,and by K.C.Wong Magna Fund in Ningbo University
文摘We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.
基金sponsored by the National Natural Science Foundation of China(41174084)
文摘In many parts of the global plates,including subduction zones,mid-ocean ridges and even the interior of the continental plates,seismic anisotropy has a certain correlation with image of absolute plate motion( APM),or is in accord with the predominant direction of the intraplate stress field. In our study,a statistical analysis is done on the correlations of plate motion with seismic anisotropy as well as a stress field within nine plate boundaries which contain major subduction zones in the globe. Results indicate that absolute or relative plate motion( RPM) controls the seismic anisotropy and stress field of the plate boundary,which is especially obvious for the RPM. It can also be inferred that the correlation of RPM is better than that of APM. Because of the complexity of subduction mechanism and diversity of controlling factors at plate boundaries containing subduction zones,the correlation becomes much complex. Sources of anisotropy at various depths show different characteristics,and stress state is controlled by many factors,thus further discussions on the correlations are required.
基金supported by the National Key Basic Research Program of China(Grant Nos.2014CB921001,and 2013CB328706)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(GrantNo.QYZDJ-SSW-SLH020)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(GrantNo.XDB07030200)the National Natural Science Foundation of China(Grant Nos.11574365,11474349,11674385,and 11404380)
文摘We investigated the effects of oxygen vacancies on the structural, magnetic, and transport properties of Lal-xSrxMnO3 (x=0.1, 0.2, 0.33, 0.4, and 0.5) grown around a critical point (without/with oxygen vacancies) under low oxygen pressure (10 Pa) and high oxygen pressure (40 Pa). We found that all films exhibit ferromagnetic behavior below the magnetic critical temperature, and that the films grown under low oxygen pressures have degraded magnetic properties with lower Curie temperatures and smaller magnetic moments. These results show that in epitaxial La1-xSrxMnO3 thin films, the magnetic and transport properties are very sensitive to doping concentration and oxygen vacancies. Phase diagrams of the films based on the doping concentration and oxygen vacancies were plotted and discussed.