To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,g...To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,governing equations are constructed and Runge-Kutta approach is used.Lastly,trajectories of fibers are calculated by specially designed Matlab procedure according to the principles mentioned above.Results show that fiber motions at different initial positions are different;X-axis velocity component makes fibers gathering on sides of suction slot;Y-axis airflow gets fibers gradually close and then stick to the surface of lattice apron.Fiber motions also reflect that the compact spinning process in condensing zone can be divided into three parts:fast convergence zone,adjustment convergence zone,and steady convergence zone.展开更多
There was a slow-relaxing tail of skeletal muscles in vitro upon the inhibition of Ca2+-pump by cyclopiazonic acid (CPA). Herein, a new linearly-combined bi-exponential model to resolve this slow-relaxing tail from th...There was a slow-relaxing tail of skeletal muscles in vitro upon the inhibition of Ca2+-pump by cyclopiazonic acid (CPA). Herein, a new linearly-combined bi-exponential model to resolve this slow-relaxing tail from the fast-relaxing phase was investigated for kinetic analysis of the isometric relaxation process of Bufo gastrocnemius in vitro, in comparison to the single exponential model and the classical bi-exponential model. During repetitive stimulations at a 2-s interval by square pulses of a 2-ms duration at 12 V direct currency (DC), the isometric tension of Bufo gastrocnemius was recorded at 100 Hz. The relaxation curve with tensions falling from 90% of the peak to the 15th datum before next stimulation was analyzed by three exponential models using a program in MATLAB 6.5. Both the goodness of fit and the distribution of the residuals for the best fitting sup- ported the comparable validity of this new bi-exponential model for kinetic analysis of the relaxation process of the control muscles. After CPA treatment, however, this new bi-exponential model showed an obvious statistical superiority for kinetic analysis of the muscle relaxation process, and it gave the estimated rest tension consistent to that by experimentation, whereas both the classical bi-exponential model and the single exponential model gave biased rest tensions. Moreover, after the treatment of muscles by CPA, both the single exponential model and the classical bi-exponential model yielded lowered relaxation rates, nevertheless, this new bi-exponential model had relaxation rates of negligible changes except much higher rest tensions. These results suggest that this novel linearly-combined bi-exponential model is desirable for kinetic analysis of the relaxation process of muscles with altered Ca2+-pumping activity.展开更多
The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Ef...The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Effect of feature selection in EMG signal processing was also verified by comparing classification accuracy of each feature, and the enhancement of classification accuracy by normalization was confirmed. EMG signals were acquired from two electrodes placed on the forearm of twenty eight healthy subjects and used for recognition of wrist motion. Features were extracted from the obtained EMG signals in the time domain and were applied to classification methods. The difference absolute mean value (DAMV), difference absolute standard deviation value (DASDV), mean absolute value (MAV), root mean square (RMS) were used for composing 16 double features which were combined of two channels. In the classification methods, the highest accuracy of classification showed in the GMM. The most effective combination of classification method and double feature was (MAV, DAMV) of GMM and its classification accuracy was 96.85%. The results of normalization were better than those of non-normalization in GMM, k-NN, and LDA.展开更多
Acetone–butanol–ethanol(ABE)fermentation process can be exploited for the generation of butanol as biofuel,however it does need to overcome its low volumetric solvent productivity before it can commercially compete ...Acetone–butanol–ethanol(ABE)fermentation process can be exploited for the generation of butanol as biofuel,however it does need to overcome its low volumetric solvent productivity before it can commercially compete with fossil fuel technologies.In this regard,mathematical modelling and simulation analysis are tools that can serve as the base for process engineering development of biological systems.In this work,a novel phenomenological kinetic model of Clostridium acetobutylicum ATCC 824 was considered as a benchmark system to evaluate the behaviour of an ABE fermentation under different process configurations using both free and immobilized cells:single stage batch operation,fed-batch,single stage Continuous Stirred Tank Reactor(CSTR)and multistage CSTRs with and without biomass recirculation.The proposed model achieved a linear correlation index r^2=0.9952 and r^2=0.9710 over experimental data for free and immobilized cells respectively.The predicted maximum butanol concentration and productivity obtained were 13.08 g·L^(-1)and 1.9620 g·L^(-1)·h^(-1)respectively,which represents an increase of 1.01%and 990%versus the currently developed industrial scale process reported currently into the literature.These results provide a reliable platform for the design and optimization of the ABE fermentation system and showcase the adequate predictive nature of the proposed model.展开更多
A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysi...A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysis of mechanical system (ADAMS). ANSYS program was applied to the structural analysis of the model. A finite element analytic model was built up with the bottom-up methodology and was meshed. The default Block Lanczos method was used to work out the native frequency. The results indicate that the five lower modes-the transpotaion wheel, the left holding device, the right holding device, the left cutter disk, and the right cutter disk- and displacement of vibratory type only slightly affect the process of sugarcane harvester and harvesting quality. So it is advisable that the optimization of the static intensity other than the dynamic stiffness of uplift device be executed.展开更多
Helicity was applied to analyze several high-wind and rainstorm processes, which occurred from May to June, 2001 over Yunnan in early summer. The results of diagnostic analyses show that the rainstorm occurs in the ar...Helicity was applied to analyze several high-wind and rainstorm processes, which occurred from May to June, 2001 over Yunnan in early summer. The results of diagnostic analyses show that the rainstorm occurs in the area in which hp is positive at 700 hPa and energy is unstable. The change of helicity can reflect the movement and development of synoptic system and the position and intensity of the rainstorm. The value of hp is a negative center at the upper level and a positive at the lower level over the rainstorm position; moreover it can reflect the characteristics of vertical distribution and rotational motion.展开更多
The aim of the present study was to develop and validate a new marker model for optoelectronic systems adapted to wearable devices, in order to have an analysis tool for kinematic gait evaluation of reproduced pattern...The aim of the present study was to develop and validate a new marker model for optoelectronic systems adapted to wearable devices, in order to have an analysis tool for kinematic gait evaluation of reproduced patterns by exoskeletons. The marker model has a total of 36 retro-reflective markers attached bilaterally to anatomical landmarks during the static measures (without exoskeleton) and 28 markers at the dynamics measures (with exoskeleton). The main difference between others kinematic models and the described adapted model was the placement of the three markers in the back thigh and the other three in the back calf, what allowed removing the hip, thigh, knee, tibia and ankle markers. The proposed adapted marker model could be an effective tool to validate the joint movement and velocities of those wearable exoskeletons that at present have been developing.展开更多
Polar motion depicts the slow changes in the locations of the poles due to the earth's internal instantaneous axis of rotation. The LS+AR model is recognized as one of the best models for polar motion prediction.T...Polar motion depicts the slow changes in the locations of the poles due to the earth's internal instantaneous axis of rotation. The LS+AR model is recognized as one of the best models for polar motion prediction.Through statistical analysis of the time series of the LS+AR model's short-term prediction residuals,we found that there is a good correlation of model prediction residuals between adjacent terms.These indicate that the preceding model prediction residuals and experiential adjustment matrixes can be used to correct the next prediction results,thereby forming a new LS+AR model with additional error correction that applies to polar motion prediction.Simulated predictions using this new model revealed that the proposed method can improve the accuracy and reliability of polar motion prediction.In fact,the accuracies of ultra short-term and short-term predictions using the new model were equal to the international best level at present.展开更多
文摘To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,governing equations are constructed and Runge-Kutta approach is used.Lastly,trajectories of fibers are calculated by specially designed Matlab procedure according to the principles mentioned above.Results show that fiber motions at different initial positions are different;X-axis velocity component makes fibers gathering on sides of suction slot;Y-axis airflow gets fibers gradually close and then stick to the surface of lattice apron.Fiber motions also reflect that the compact spinning process in condensing zone can be divided into three parts:fast convergence zone,adjustment convergence zone,and steady convergence zone.
基金Project supported by the National Natural Science Foundation of China (No. 30472139)the Education Commission for the First Batch of Excellent Young Teachers in Universities of Chongqing City, China
文摘There was a slow-relaxing tail of skeletal muscles in vitro upon the inhibition of Ca2+-pump by cyclopiazonic acid (CPA). Herein, a new linearly-combined bi-exponential model to resolve this slow-relaxing tail from the fast-relaxing phase was investigated for kinetic analysis of the isometric relaxation process of Bufo gastrocnemius in vitro, in comparison to the single exponential model and the classical bi-exponential model. During repetitive stimulations at a 2-s interval by square pulses of a 2-ms duration at 12 V direct currency (DC), the isometric tension of Bufo gastrocnemius was recorded at 100 Hz. The relaxation curve with tensions falling from 90% of the peak to the 15th datum before next stimulation was analyzed by three exponential models using a program in MATLAB 6.5. Both the goodness of fit and the distribution of the residuals for the best fitting sup- ported the comparable validity of this new bi-exponential model for kinetic analysis of the relaxation process of the control muscles. After CPA treatment, however, this new bi-exponential model showed an obvious statistical superiority for kinetic analysis of the muscle relaxation process, and it gave the estimated rest tension consistent to that by experimentation, whereas both the classical bi-exponential model and the single exponential model gave biased rest tensions. Moreover, after the treatment of muscles by CPA, both the single exponential model and the classical bi-exponential model yielded lowered relaxation rates, nevertheless, this new bi-exponential model had relaxation rates of negligible changes except much higher rest tensions. These results suggest that this novel linearly-combined bi-exponential model is desirable for kinetic analysis of the relaxation process of muscles with altered Ca2+-pumping activity.
基金Project(NIPA-2012-H0401-12-1007) supported by the MKE(The Ministry of Knowledge Economy), Korea, supervised by the NIPAProject(2010-0020163) supported by Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea
文摘The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Effect of feature selection in EMG signal processing was also verified by comparing classification accuracy of each feature, and the enhancement of classification accuracy by normalization was confirmed. EMG signals were acquired from two electrodes placed on the forearm of twenty eight healthy subjects and used for recognition of wrist motion. Features were extracted from the obtained EMG signals in the time domain and were applied to classification methods. The difference absolute mean value (DAMV), difference absolute standard deviation value (DASDV), mean absolute value (MAV), root mean square (RMS) were used for composing 16 double features which were combined of two channels. In the classification methods, the highest accuracy of classification showed in the GMM. The most effective combination of classification method and double feature was (MAV, DAMV) of GMM and its classification accuracy was 96.85%. The results of normalization were better than those of non-normalization in GMM, k-NN, and LDA.
基金financial support via the postgraduate scholarship No.277760
文摘Acetone–butanol–ethanol(ABE)fermentation process can be exploited for the generation of butanol as biofuel,however it does need to overcome its low volumetric solvent productivity before it can commercially compete with fossil fuel technologies.In this regard,mathematical modelling and simulation analysis are tools that can serve as the base for process engineering development of biological systems.In this work,a novel phenomenological kinetic model of Clostridium acetobutylicum ATCC 824 was considered as a benchmark system to evaluate the behaviour of an ABE fermentation under different process configurations using both free and immobilized cells:single stage batch operation,fed-batch,single stage Continuous Stirred Tank Reactor(CSTR)and multistage CSTRs with and without biomass recirculation.The proposed model achieved a linear correlation index r^2=0.9952 and r^2=0.9710 over experimental data for free and immobilized cells respectively.The predicted maximum butanol concentration and productivity obtained were 13.08 g·L^(-1)and 1.9620 g·L^(-1)·h^(-1)respectively,which represents an increase of 1.01%and 990%versus the currently developed industrial scale process reported currently into the literature.These results provide a reliable platform for the design and optimization of the ABE fermentation system and showcase the adequate predictive nature of the proposed model.
基金the National Natural Science Foundation (Grant No. 50365001),Guangxi Young Scientists’ Foundation (Grant No. Gui Qin Ke 0640013)PhD Startup Found-ation of Guangxi University of Technology (Project No. 500514).
文摘A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysis of mechanical system (ADAMS). ANSYS program was applied to the structural analysis of the model. A finite element analytic model was built up with the bottom-up methodology and was meshed. The default Block Lanczos method was used to work out the native frequency. The results indicate that the five lower modes-the transpotaion wheel, the left holding device, the right holding device, the left cutter disk, and the right cutter disk- and displacement of vibratory type only slightly affect the process of sugarcane harvester and harvesting quality. So it is advisable that the optimization of the static intensity other than the dynamic stiffness of uplift device be executed.
基金Applied Foundation Project of Yunnan (2000D0091M) Key Scientific Research Program for the 10th-five-year economic development plan (2001NG43)
文摘Helicity was applied to analyze several high-wind and rainstorm processes, which occurred from May to June, 2001 over Yunnan in early summer. The results of diagnostic analyses show that the rainstorm occurs in the area in which hp is positive at 700 hPa and energy is unstable. The change of helicity can reflect the movement and development of synoptic system and the position and intensity of the rainstorm. The value of hp is a negative center at the upper level and a positive at the lower level over the rainstorm position; moreover it can reflect the characteristics of vertical distribution and rotational motion.
文摘The aim of the present study was to develop and validate a new marker model for optoelectronic systems adapted to wearable devices, in order to have an analysis tool for kinematic gait evaluation of reproduced patterns by exoskeletons. The marker model has a total of 36 retro-reflective markers attached bilaterally to anatomical landmarks during the static measures (without exoskeleton) and 28 markers at the dynamics measures (with exoskeleton). The main difference between others kinematic models and the described adapted model was the placement of the three markers in the back thigh and the other three in the back calf, what allowed removing the hip, thigh, knee, tibia and ankle markers. The proposed adapted marker model could be an effective tool to validate the joint movement and velocities of those wearable exoskeletons that at present have been developing.
基金supported by the National Natural Science Foundation of China(Grant Nos.41021061&41174012)
文摘Polar motion depicts the slow changes in the locations of the poles due to the earth's internal instantaneous axis of rotation. The LS+AR model is recognized as one of the best models for polar motion prediction.Through statistical analysis of the time series of the LS+AR model's short-term prediction residuals,we found that there is a good correlation of model prediction residuals between adjacent terms.These indicate that the preceding model prediction residuals and experiential adjustment matrixes can be used to correct the next prediction results,thereby forming a new LS+AR model with additional error correction that applies to polar motion prediction.Simulated predictions using this new model revealed that the proposed method can improve the accuracy and reliability of polar motion prediction.In fact,the accuracies of ultra short-term and short-term predictions using the new model were equal to the international best level at present.