Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are...Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are not easily detectable through conventional biomechanical techniques.This study aimed to investigate if and how competition standard and progression speed affect race walking kinematics from both a conventional and a coordination variability perspective.Methods:Fifteen experienced athletes divided into three groups(elite,international,and national) were studied while race walking on a treadmill at two different speeds(12.0 and 15.5 km/h).Basic gait parameters,the angular displacement of the pelvis and lower limbs,and the variability in continuous relative phase between six different joint couplings were analyzed.Results:Most of the spatio-temporal,kinematic,and coordination variability measures proved sensitive to the change in speed.Conversely,non-linear dynamics measures highlighted differences between athletes of different competition standard when conventional analytical tools were not able to discriminate between different skill levels.Continuous relative phase variability was higher for national level athletes than international and elite in two couplings(pelvis obliquity—hip flex/extension and pelvis rotation—ankle dorsi/plantarflexion) and gait phases(early stance for the first coupling,propulsive phase for the second) that are deemed fundamental for correct technique and performance.Conclusion:Measures of coordination variability showed to be a more sensitive tool for the fine detection of skill-dependent factors in competitive race walking,and showed good potential for being integrated in the assessment and monitoring of sports motor abilities.展开更多
Objectives: Heart rate variability (HRV) can be a simple, non-invasive method of gauging cardiac autonomic nervous system fluctuations across periodised training workloads and taper in elite athlete populations. Th...Objectives: Heart rate variability (HRV) can be a simple, non-invasive method of gauging cardiac autonomic nervous system fluctuations across periodised training workloads and taper in elite athlete populations. The purpose of these three case studies was to examine daily cardiac autonomic variations in Paralympic athletes leading in to the Paralympic games. Methods: Three Paralympie gold medallist swimmers were monitored daily for their resting HRV over a 17-week monitoring period leading up to the Paralympic games. Specific time- and frequency-domain measures, along with non-linear indices of HRV were calculated for all analyses. All HRV data were analysed individually using daily values, weekly average values, and average values for rest and training phases. Results: A significant difference in HRV was seen for all variables between athlete 1 and athletes 2 and 3 (amputee disabilities) during the entire monitoring period. Conclusion: Despite minimal long-term changes, both swimming classification and disability type significantly influence HRV during athlete monitoring. An increased understanding of individual responses to training, travel, and other outside influences affecting Paralympic athletes could potentially lead to improved management and monitoring of training workloads for enhanced nerformance.展开更多
The aim of this paper is to describe and analyse the behaviour of heart rate variability(HRV)during constant-load,high-intensity exercise using a time frequency analysis(Wavelet Transform).Eleven elite cyclists took p...The aim of this paper is to describe and analyse the behaviour of heart rate variability(HRV)during constant-load,high-intensity exercise using a time frequency analysis(Wavelet Transform).Eleven elite cyclists took part in the study(age:18.6±3.0 years;VO_(2max):4.88±0.61 litres·min^(-1)).Initially,all subjects performed an incremental cycloergometer test to determine load power in a constant load-test(379.55±36.02 W;89.0%).HRV declined dramatically from the start of testing(p<0.05).The behaviour of power spectral density within the LF band mirrored that of total energy,recording a significant decrease from the outset LF peaks fell rapidly thereafter,remaining stable until the end of the test.HF-VHF fell sharply in the first 20 to 30 seconds.The relative weighting(%) of HF-VHF was inverted with the onset of fatigue,[1.6%at the start,7.1(p<0.05) at the end of the first phase,and 43.1%(p<0.05) at the end of the test].HF-VHF_(peak) displayed three phases:a moderate initial increase,followed by a slight fall,thereafter increasing to the end of the test.The LF/HF-VHF ratio increased at the start,later falling progressively until the end of the first phase and remaining around minimal values until the end of the test.展开更多
文摘Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are not easily detectable through conventional biomechanical techniques.This study aimed to investigate if and how competition standard and progression speed affect race walking kinematics from both a conventional and a coordination variability perspective.Methods:Fifteen experienced athletes divided into three groups(elite,international,and national) were studied while race walking on a treadmill at two different speeds(12.0 and 15.5 km/h).Basic gait parameters,the angular displacement of the pelvis and lower limbs,and the variability in continuous relative phase between six different joint couplings were analyzed.Results:Most of the spatio-temporal,kinematic,and coordination variability measures proved sensitive to the change in speed.Conversely,non-linear dynamics measures highlighted differences between athletes of different competition standard when conventional analytical tools were not able to discriminate between different skill levels.Continuous relative phase variability was higher for national level athletes than international and elite in two couplings(pelvis obliquity—hip flex/extension and pelvis rotation—ankle dorsi/plantarflexion) and gait phases(early stance for the first coupling,propulsive phase for the second) that are deemed fundamental for correct technique and performance.Conclusion:Measures of coordination variability showed to be a more sensitive tool for the fine detection of skill-dependent factors in competitive race walking,and showed good potential for being integrated in the assessment and monitoring of sports motor abilities.
文摘Objectives: Heart rate variability (HRV) can be a simple, non-invasive method of gauging cardiac autonomic nervous system fluctuations across periodised training workloads and taper in elite athlete populations. The purpose of these three case studies was to examine daily cardiac autonomic variations in Paralympic athletes leading in to the Paralympic games. Methods: Three Paralympie gold medallist swimmers were monitored daily for their resting HRV over a 17-week monitoring period leading up to the Paralympic games. Specific time- and frequency-domain measures, along with non-linear indices of HRV were calculated for all analyses. All HRV data were analysed individually using daily values, weekly average values, and average values for rest and training phases. Results: A significant difference in HRV was seen for all variables between athlete 1 and athletes 2 and 3 (amputee disabilities) during the entire monitoring period. Conclusion: Despite minimal long-term changes, both swimming classification and disability type significantly influence HRV during athlete monitoring. An increased understanding of individual responses to training, travel, and other outside influences affecting Paralympic athletes could potentially lead to improved management and monitoring of training workloads for enhanced nerformance.
文摘The aim of this paper is to describe and analyse the behaviour of heart rate variability(HRV)during constant-load,high-intensity exercise using a time frequency analysis(Wavelet Transform).Eleven elite cyclists took part in the study(age:18.6±3.0 years;VO_(2max):4.88±0.61 litres·min^(-1)).Initially,all subjects performed an incremental cycloergometer test to determine load power in a constant load-test(379.55±36.02 W;89.0%).HRV declined dramatically from the start of testing(p<0.05).The behaviour of power spectral density within the LF band mirrored that of total energy,recording a significant decrease from the outset LF peaks fell rapidly thereafter,remaining stable until the end of the test.HF-VHF fell sharply in the first 20 to 30 seconds.The relative weighting(%) of HF-VHF was inverted with the onset of fatigue,[1.6%at the start,7.1(p<0.05) at the end of the first phase,and 43.1%(p<0.05) at the end of the test].HF-VHF_(peak) displayed three phases:a moderate initial increase,followed by a slight fall,thereafter increasing to the end of the test.The LF/HF-VHF ratio increased at the start,later falling progressively until the end of the first phase and remaining around minimal values until the end of the test.