Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisenso...Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.展开更多
In this paper a learning mechanism for reactive fuzzy controller design of a mobile robot navigating in unknown environments is proposed. The fuzzy logical controller is constructed based on the kinematics model of a ...In this paper a learning mechanism for reactive fuzzy controller design of a mobile robot navigating in unknown environments is proposed. The fuzzy logical controller is constructed based on the kinematics model of a real robot. The approach to learning the fuzzy rule base by relatively simple and less computational Q-learning is described in detail. After analyzing the credit assignment problem caused by the rules collision, a remedy is presented. Furthermore, time-varying parameters are used to increase the learning speed. Simulation results prove the mechanism can learn fuzzy navigation rules successfully only using scalar reinforcement signal and the rule base learned is proved to be correct and feasible on real robot platforms.展开更多
To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster an...To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.展开更多
This paper intends to introduce the active vision system with autonomous robot competition in the background. It presents some characteristics of the human oculomotor system in active ma-chine vision svstem: smooth pu...This paper intends to introduce the active vision system with autonomous robot competition in the background. It presents some characteristics of the human oculomotor system in active ma-chine vision svstem: smooth pursuit and saccade. Besides, zoom tracking is used to continuous ad-justment of a camera's focal length to keep a constant sized image of an object moving along the camera's optical axis. Experiments indicate the technology to be efficient for tracking the bail in the robot competition.展开更多
Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(...Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.展开更多
Reusable launch vehicle is an important way to realize fast,cheap and reliable space transportation.A combined cycle engine system provides a more efficient and flexible form of power.The investigation on the research...Reusable launch vehicle is an important way to realize fast,cheap and reliable space transportation.A combined cycle engine system provides a more efficient and flexible form of power.The investigation on the research status of the combined cycle engine technology,including basic principle,research programs and classification of structure is firstly discussed in this paper.Then the bilevel hierarchical and integrated parameters/trajectory overall optimization technologies are applied to improve the efficiency and effectiveness of overall vehicle design.Simulations are implemented to compare and analyze the effectiveness and adaptability of the two algorithms,in order to provide the technical reserves and beneficial references for further research on combined cycle engine reusable launch vehicles.展开更多
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec...A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.展开更多
Driving simulators involve the capability of simulating critical and dangerous driving situations up to the limits of active safety. They are employed for investigating the interactions of the driver-vehicle system un...Driving simulators involve the capability of simulating critical and dangerous driving situations up to the limits of active safety. They are employed for investigating the interactions of the driver-vehicle system under reproducible and non-dangerous conditions. Because of their flexibility they are well established in scientific research. They are mainly used in current automotive fields of research like driver assistance and autonomous driving systems. The development of assistance systems makes the human being as the directly concerned component irreplaceable in the development process. Here the use of driving simulators has become an essential element, because they offer the possibility to integrate the human being as a real part into the simulation environment. It must be considered that the circuit of information has to be the same as under real driving conditions. Otherwise the results are not transferable. This paper deals with the possibilities of presenting all information to the driver, which are necessary to give him a realistic impression of driving. A main subject is the sensation of yaw-movements, which could be of interest when novel kinds of moving base systems are designed.展开更多
There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope c...There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope carriers,interacting multiple model (IMM) is employed here to solve the problem.The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in gyro signal processing is introduced.And with the help of the Singer model,the system model set of gyro outputs is constructed.In order to demonstrate the effectiveness of the proposed approach,static experiment and dynamic experiment are carried out respectively.Simulation analysis results indicate that the IMMKF algorithm is excellent in eliminating gyro drift errors,which could adapt to the change of carrier maneuvering process well.展开更多
A motion control system for a parallel robot with image positioning was implemented in this paper. The system is composed of a machine vision device, a delta robot and a linear stage, and the concerned hardware, softw...A motion control system for a parallel robot with image positioning was implemented in this paper. The system is composed of a machine vision device, a delta robot and a linear stage, and the concerned hardware, software and working methods were developed completely and verified successfully. During the phase of machine vision, the image of object was captured by camera, and then the process of smoothing filter, threshold algorithm and edge detection, was applied so as to obtain the edges of image. Finally, DV-GHT (Displacement Vector Generalized Hough Transformation) algorithm was used to recognize the center of multiple and arbitrary 2-D shapes objects. After the center of objects was recognized, the objects were delivered to the workspace of a delta robot by a motorized stage. Through the coordinate transformation between the camera and the robot system, the information of center can be converted to control commands for every working motors. Following, the delta robot picks up objects to the specified position sequentially by the trajectory planning and tracking controls. The software of C++/CLI is used to achieve the phase of motion controls and the program of DV-GHT is used to detect and conduct the positions for four different characteristics of the objects simultaneously so as to indicate the delta robot to classify the objects successfully.展开更多
Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness o...Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness of the system. To solve this problem, a novel integration method was proposed to combine hi-static ultra-wideband radar and cameras. In this recognition system, two cameras are used to localize the object's region, regions while a radar is used to obtain its 3D motion models on a mobile robot. The recognition results can be matched in the 3D motion library in order to recognize its motions. To confirm the effectiveness of the proposed method, the experimental results of recognition using vision sensors and those of recognition using the integration method were compared in different environments. Higher correct-recognition rate is achieved in the experiment.展开更多
Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded...Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded motion controller becomes the necessity of the market. The major objective of the paper is to establish the basic software and hardware platform of a high-performance, low-cost and universal embedded motion controller and study the application. And the paper proposes the idea of developing a low-cost and economic touchscreen motion controller, which provides valuable reference for the relevant research and development in China.展开更多
文摘Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.
文摘In this paper a learning mechanism for reactive fuzzy controller design of a mobile robot navigating in unknown environments is proposed. The fuzzy logical controller is constructed based on the kinematics model of a real robot. The approach to learning the fuzzy rule base by relatively simple and less computational Q-learning is described in detail. After analyzing the credit assignment problem caused by the rules collision, a remedy is presented. Furthermore, time-varying parameters are used to increase the learning speed. Simulation results prove the mechanism can learn fuzzy navigation rules successfully only using scalar reinforcement signal and the rule base learned is proved to be correct and feasible on real robot platforms.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025
文摘To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.
基金the High Technology Research and Development Program of China
文摘This paper intends to introduce the active vision system with autonomous robot competition in the background. It presents some characteristics of the human oculomotor system in active ma-chine vision svstem: smooth pursuit and saccade. Besides, zoom tracking is used to continuous ad-justment of a camera's focal length to keep a constant sized image of an object moving along the camera's optical axis. Experiments indicate the technology to be efficient for tracking the bail in the robot competition.
基金Project(20100480964) supported by China Postdoctoral Science FoundationProjects(2002AA420090,2008AA092301) supported by the National High Technology Research and Development Program of China
文摘Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.
文摘Reusable launch vehicle is an important way to realize fast,cheap and reliable space transportation.A combined cycle engine system provides a more efficient and flexible form of power.The investigation on the research status of the combined cycle engine technology,including basic principle,research programs and classification of structure is firstly discussed in this paper.Then the bilevel hierarchical and integrated parameters/trajectory overall optimization technologies are applied to improve the efficiency and effectiveness of overall vehicle design.Simulations are implemented to compare and analyze the effectiveness and adaptability of the two algorithms,in order to provide the technical reserves and beneficial references for further research on combined cycle engine reusable launch vehicles.
基金Projects(90820302, 60805027, 61175064) supported by the National Natural Science Foundation of ChinaProject(2011ssxt231) supported by the Master Degree Thesis Innovation Project Foundation of Central South University, China+1 种基金Project(200805330005) supported by the Research Fund for the Doctoral Program of Higher Education, ChinaProject(2011FJ4043) supported by the Academician Foundation of Hunan Province, China
文摘A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.
文摘Driving simulators involve the capability of simulating critical and dangerous driving situations up to the limits of active safety. They are employed for investigating the interactions of the driver-vehicle system under reproducible and non-dangerous conditions. Because of their flexibility they are well established in scientific research. They are mainly used in current automotive fields of research like driver assistance and autonomous driving systems. The development of assistance systems makes the human being as the directly concerned component irreplaceable in the development process. Here the use of driving simulators has become an essential element, because they offer the possibility to integrate the human being as a real part into the simulation environment. It must be considered that the circuit of information has to be the same as under real driving conditions. Otherwise the results are not transferable. This paper deals with the possibilities of presenting all information to the driver, which are necessary to give him a realistic impression of driving. A main subject is the sensation of yaw-movements, which could be of interest when novel kinds of moving base systems are designed.
基金Supported by the National High Technology Research and Development Program of China(No.2012AA061101)the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information(Nanjing University of Science and Technology),Ministry of Education(No.3092013012205)
文摘There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope carriers,interacting multiple model (IMM) is employed here to solve the problem.The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in gyro signal processing is introduced.And with the help of the Singer model,the system model set of gyro outputs is constructed.In order to demonstrate the effectiveness of the proposed approach,static experiment and dynamic experiment are carried out respectively.Simulation analysis results indicate that the IMMKF algorithm is excellent in eliminating gyro drift errors,which could adapt to the change of carrier maneuvering process well.
文摘A motion control system for a parallel robot with image positioning was implemented in this paper. The system is composed of a machine vision device, a delta robot and a linear stage, and the concerned hardware, software and working methods were developed completely and verified successfully. During the phase of machine vision, the image of object was captured by camera, and then the process of smoothing filter, threshold algorithm and edge detection, was applied so as to obtain the edges of image. Finally, DV-GHT (Displacement Vector Generalized Hough Transformation) algorithm was used to recognize the center of multiple and arbitrary 2-D shapes objects. After the center of objects was recognized, the objects were delivered to the workspace of a delta robot by a motorized stage. Through the coordinate transformation between the camera and the robot system, the information of center can be converted to control commands for every working motors. Following, the delta robot picks up objects to the specified position sequentially by the trajectory planning and tracking controls. The software of C++/CLI is used to achieve the phase of motion controls and the program of DV-GHT is used to detect and conduct the positions for four different characteristics of the objects simultaneously so as to indicate the delta robot to classify the objects successfully.
基金Supported by National Natural Science Foundation of China(No.50875193)
文摘Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness of the system. To solve this problem, a novel integration method was proposed to combine hi-static ultra-wideband radar and cameras. In this recognition system, two cameras are used to localize the object's region, regions while a radar is used to obtain its 3D motion models on a mobile robot. The recognition results can be matched in the 3D motion library in order to recognize its motions. To confirm the effectiveness of the proposed method, the experimental results of recognition using vision sensors and those of recognition using the integration method were compared in different environments. Higher correct-recognition rate is achieved in the experiment.
文摘Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded motion controller becomes the necessity of the market. The major objective of the paper is to establish the basic software and hardware platform of a high-performance, low-cost and universal embedded motion controller and study the application. And the paper proposes the idea of developing a low-cost and economic touchscreen motion controller, which provides valuable reference for the relevant research and development in China.