A navigation method based on the partially observable markov decision process (POMDP) for smart wheelchairs in uncertain environments is presented in this paper. The design key factors for the navigation system of a...A navigation method based on the partially observable markov decision process (POMDP) for smart wheelchairs in uncertain environments is presented in this paper. The design key factors for the navigation system of a smart wheelchair are discussed. A kinematics model of the smart wheelchair is given, and the model and principle of POMDP are introduced. In order to respond in uncertain local environments, a novel navigation methodology based on POMDP using the sensors perception and the user's joystick input is presented. The state space, the action set, the observations and the sensor fusion of the navigation method are given in detail, and the optimal policy of the POMDP model is proposed. Experimental results demonstrate the feasibility of this navigation method. Analysis is also conducted to investigate performance evaluation, advantages of the approach and potential generalization of this paper.展开更多
文摘A navigation method based on the partially observable markov decision process (POMDP) for smart wheelchairs in uncertain environments is presented in this paper. The design key factors for the navigation system of a smart wheelchair are discussed. A kinematics model of the smart wheelchair is given, and the model and principle of POMDP are introduced. In order to respond in uncertain local environments, a novel navigation methodology based on POMDP using the sensors perception and the user's joystick input is presented. The state space, the action set, the observations and the sensor fusion of the navigation method are given in detail, and the optimal policy of the POMDP model is proposed. Experimental results demonstrate the feasibility of this navigation method. Analysis is also conducted to investigate performance evaluation, advantages of the approach and potential generalization of this paper.