This paper has been done on study kinematic problem of Persian joint in a general way. In this study, instead of using simulation analysis method as in the previous researches, the 3D rotation matrix method is applied...This paper has been done on study kinematic problem of Persian joint in a general way. In this study, instead of using simulation analysis method as in the previous researches, the 3D rotation matrix method is applied to present the relationship of angular velocities of input shaft and output shaft. The result shows that when the angle between intersecting shafts changes from 0 to 135°, the angular velocity is maintained constant. This new result completely matches with analysis from kinematic simulation of this mechanism. The obtained result is an important base to solve dynamic problem in order to develop the applicability of this joint in reality.展开更多
This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be app...This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be applied to any typical one-and two-degree-of-freedom plane PGTs containing any number of simple, compound or complex-compound planetary gear sets. The efficiency analysis of this method features a systematized and programmed process and its independence of the speed ratio. The primary contribution of this work lies in the integration of quantitative calculation, qualitative evolution and comparative analysis of kinematics of PGTs into one diagram, and in the integration of kinematics and efficiency analysis into a single method system. First, the analytical geometry method is defined, its basic properties are given, and the systematization procedure to perform kinematic analysis is demonstrated. As an application, analytical geometry diagrams of common PGTs are exhibited in the form of a list, whose kinematic characteristics and general evolution tendency are discussed. Then, with the mapping of PGTs onto the angular speed plane, the efficiency formula of analytical geometry, which has an extremely concise form, and a simple method for power flow estimation are put forward. Moreover, a general procedure is provided to analyze the efficiency and power flow. Finally, four numerical examples including a complicated eleven-link differential PGTs are given to illustrate the simpleness and intuitiveness of the analytical geometry method.展开更多
文摘This paper has been done on study kinematic problem of Persian joint in a general way. In this study, instead of using simulation analysis method as in the previous researches, the 3D rotation matrix method is applied to present the relationship of angular velocities of input shaft and output shaft. The result shows that when the angle between intersecting shafts changes from 0 to 135°, the angular velocity is maintained constant. This new result completely matches with analysis from kinematic simulation of this mechanism. The obtained result is an important base to solve dynamic problem in order to develop the applicability of this joint in reality.
基金supported by the National Natural Science Foundation of China (Grant No. 51075407)the Fundamental Research Funds for the Central Universities (Grant No. CDJXS11111143)
文摘This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be applied to any typical one-and two-degree-of-freedom plane PGTs containing any number of simple, compound or complex-compound planetary gear sets. The efficiency analysis of this method features a systematized and programmed process and its independence of the speed ratio. The primary contribution of this work lies in the integration of quantitative calculation, qualitative evolution and comparative analysis of kinematics of PGTs into one diagram, and in the integration of kinematics and efficiency analysis into a single method system. First, the analytical geometry method is defined, its basic properties are given, and the systematization procedure to perform kinematic analysis is demonstrated. As an application, analytical geometry diagrams of common PGTs are exhibited in the form of a list, whose kinematic characteristics and general evolution tendency are discussed. Then, with the mapping of PGTs onto the angular speed plane, the efficiency formula of analytical geometry, which has an extremely concise form, and a simple method for power flow estimation are put forward. Moreover, a general procedure is provided to analyze the efficiency and power flow. Finally, four numerical examples including a complicated eleven-link differential PGTs are given to illustrate the simpleness and intuitiveness of the analytical geometry method.