为抑制自由活塞式内燃直线发电机(Free-Piston Linear Generator,FPLG)在单冲程独立电磁力控制策略下,止点位置间的耦合作用,本文设计了止点位置误差补偿的运动控制策略。在设定相同燃油量变动情况下,与单冲程独立电磁力控制策略相比,...为抑制自由活塞式内燃直线发电机(Free-Piston Linear Generator,FPLG)在单冲程独立电磁力控制策略下,止点位置间的耦合作用,本文设计了止点位置误差补偿的运动控制策略。在设定相同燃油量变动情况下,与单冲程独立电磁力控制策略相比,上止点位置的误差幅值被抑制了约70%左右。这说明设计的控制策略能够一定程度地抑制止点位置的耦合作用。展开更多
Background:Athletes have been shown to exhibit better balance compared to non-athletes(NON).However,few studies have investigated how the surface on which athletes train affects the strategies adopted to maintain bala...Background:Athletes have been shown to exhibit better balance compared to non-athletes(NON).However,few studies have investigated how the surface on which athletes train affects the strategies adopted to maintain balance.Two distinct athlete groups who experience different types of sport-specific balance training are stable surface athletes(SSA) such as basketball players and those who train on unstable surfaces(USA) such as surfers.The purpose of this study was to investigate the effects of training surface on dynamic balance in athletes compared to NON.Methods:Eight NON,eight SSA,and eight USA performed five 20-s trials in each of five experimental conditions including a static condition and four dynamic conditions in which the support surface translated in the anteroposterior(AP) or mediolateral(ML) planes using positive or negative feedback paradigms.Approximate entropy(Ap En) and root mean square distance(RMS) of the center of pressure(Co P) were calculated for the AP and ML directions.Four 3 × 5(group × condition) repeated measures ANOVAs were used to determine significant effects of group and condition on variables of interest.Results:USA exhibited smaller Ap En values than SSA in the AP signals while no significant differences were observed in the ML Co P signals.Generally,the negative feedback conditions were associated with significantly greater RMS values than the positive feedback conditions.Conclusion:USA exhibit unique postural strategies compared to SSA.These unique strategies seemingly exhibit a direction-specific attribute and may be associated with divergent motor control strategies.展开更多
To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" s...To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy.展开更多
Reliability of braking systems is a key requirement to ensure the safety of in using downward belt conveyor brakes. By analyzing and comparing three commonly used braking velocity curves, we conclude that the Harrison...Reliability of braking systems is a key requirement to ensure the safety of in using downward belt conveyor brakes. By analyzing and comparing three commonly used braking velocity curves, we conclude that the Harrison curve is the best. Given the characteristics of a downward belt conveyor, we studied the control in a closed-loop velocity, a conventional PID method and an optimal PID control method. We used MATLAB/Simulink to simulate the three control methods. Our simulation results show that opti- mal PID control is especially suitable for disc braking systems. To verif!/the results from theoretical anal- ysis and simulation, a multifunctional test-bed was developed to simulate the braking process of a disc brake system. Our experimental results demonstrate that the optimal PID control can make the output velocity to follow a preset velocity correctly with only small fluctuations, meeting the requirements of a flexible brake for a belt conveyor.展开更多
This paper considers the formatiomshape control of three agents in the plane. By adding an adaptive perturbation to any agent's movement direction, a novel control strategy is proposed. It is shown that the proposed ...This paper considers the formatiomshape control of three agents in the plane. By adding an adaptive perturbation to any agent's movement direction, a novel control strategy is proposed. It is shown that the proposed novel control law can not only guarantee the global asymptotical stability of the desired formation shape, but also ensure the collision avoidance of agents between each other. Simulation results are provided to illustrate the effectiveness of the control algorithm.展开更多
文摘为抑制自由活塞式内燃直线发电机(Free-Piston Linear Generator,FPLG)在单冲程独立电磁力控制策略下,止点位置间的耦合作用,本文设计了止点位置误差补偿的运动控制策略。在设定相同燃油量变动情况下,与单冲程独立电磁力控制策略相比,上止点位置的误差幅值被抑制了约70%左右。这说明设计的控制策略能够一定程度地抑制止点位置的耦合作用。
文摘Background:Athletes have been shown to exhibit better balance compared to non-athletes(NON).However,few studies have investigated how the surface on which athletes train affects the strategies adopted to maintain balance.Two distinct athlete groups who experience different types of sport-specific balance training are stable surface athletes(SSA) such as basketball players and those who train on unstable surfaces(USA) such as surfers.The purpose of this study was to investigate the effects of training surface on dynamic balance in athletes compared to NON.Methods:Eight NON,eight SSA,and eight USA performed five 20-s trials in each of five experimental conditions including a static condition and four dynamic conditions in which the support surface translated in the anteroposterior(AP) or mediolateral(ML) planes using positive or negative feedback paradigms.Approximate entropy(Ap En) and root mean square distance(RMS) of the center of pressure(Co P) were calculated for the AP and ML directions.Four 3 × 5(group × condition) repeated measures ANOVAs were used to determine significant effects of group and condition on variables of interest.Results:USA exhibited smaller Ap En values than SSA in the AP signals while no significant differences were observed in the ML Co P signals.Generally,the negative feedback conditions were associated with significantly greater RMS values than the positive feedback conditions.Conclusion:USA exhibit unique postural strategies compared to SSA.These unique strategies seemingly exhibit a direction-specific attribute and may be associated with divergent motor control strategies.
基金the National Science Foundation under Grant No.50879014,No.50909025
文摘To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy.
文摘Reliability of braking systems is a key requirement to ensure the safety of in using downward belt conveyor brakes. By analyzing and comparing three commonly used braking velocity curves, we conclude that the Harrison curve is the best. Given the characteristics of a downward belt conveyor, we studied the control in a closed-loop velocity, a conventional PID method and an optimal PID control method. We used MATLAB/Simulink to simulate the three control methods. Our simulation results show that opti- mal PID control is especially suitable for disc braking systems. To verif!/the results from theoretical anal- ysis and simulation, a multifunctional test-bed was developed to simulate the braking process of a disc brake system. Our experimental results demonstrate that the optimal PID control can make the output velocity to follow a preset velocity correctly with only small fluctuations, meeting the requirements of a flexible brake for a belt conveyor.
基金supported by National Nature Science Foundation under Grant Nos.60974041,60934006Research Fund for the Doctoral Program of Higher Education of China under Grant No.20090092110021
文摘This paper considers the formatiomshape control of three agents in the plane. By adding an adaptive perturbation to any agent's movement direction, a novel control strategy is proposed. It is shown that the proposed novel control law can not only guarantee the global asymptotical stability of the desired formation shape, but also ensure the collision avoidance of agents between each other. Simulation results are provided to illustrate the effectiveness of the control algorithm.