A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous ...A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous underwater vehicle(PDAUV) is hereby designed to solve these problems when working with advanced optical,acoustical and electrical sensors for underwater pipeline detection.PDAUV is a test bed that not only examines the logical rationality of the program,effectiveness of the hardware architecture,accuracy of the software interface protocol as well as the reliability and stability of the control system but also verifies the effectiveness of the control system in tank experiments and sea trials.The motion control system of PDAUV,including both the hardware and software architectures,is introduced in this work.The software module and information flow of the motion control system of PDAUV and a novel neural network-based control(NNC) are also covered.Besides,a real-time identification method based on neural network is used to realize system identification.The tank experiments and sea trials are carried out to verify the feasibility and capability of PDAUV control system to complete underwater pipeline detection task.展开更多
This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is d...This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.展开更多
Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded...Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded motion controller becomes the necessity of the market. The major objective of the paper is to establish the basic software and hardware platform of a high-performance, low-cost and universal embedded motion controller and study the application. And the paper proposes the idea of developing a low-cost and economic touchscreen motion controller, which provides valuable reference for the relevant research and development in China.展开更多
To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" s...To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy.展开更多
Motion simulator usually appears the phenomenon of false cues and the workspace is limited in the process of washout. The proposed washout algorithm combines fuzzy logic control with the vestibular system to design th...Motion simulator usually appears the phenomenon of false cues and the workspace is limited in the process of washout. The proposed washout algorithm combines fuzzy logic control with the vestibular system to design the tilt coordination fuzzy adaptive filter, in order to minimize the vestibular sensory error below the human perception threshold. Owing to tilt coordination angular velocity limiter, the loss of low-pass acceleration must be compensated by the acceleration transform model. The translational channel decreases the possibility of the workspace beyond limitation and expands the scope of motion platform simulating input acceleration by using third-order filter. The simulation results show that the proposed algorithm can effectively overcome the phase retardation of classical washout algorithm, and then prevent the produce of false cues, decrease the displacement of motion platform simultaneously; in addition, white Gaussian noise simulates large variations in acceleration. The proposed washout algorithm can have maximal extreme value of acceleration and accurate simulating performance in general. It also proves that the proposed washout algorithm has a strong adaptability and reliability, which can effectively improve the dynamic fidelity for motion simulator.展开更多
The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-orde...The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.展开更多
基金Project(2011AA09A106)supported by the Hi-tech Research and Development Program of ChinaProject(51179035)supported by the National Natural Science Foundation of ChinaProject(2015ZX01041101)supported by Major National Science and Technology of China
文摘A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous underwater vehicle(PDAUV) is hereby designed to solve these problems when working with advanced optical,acoustical and electrical sensors for underwater pipeline detection.PDAUV is a test bed that not only examines the logical rationality of the program,effectiveness of the hardware architecture,accuracy of the software interface protocol as well as the reliability and stability of the control system but also verifies the effectiveness of the control system in tank experiments and sea trials.The motion control system of PDAUV,including both the hardware and software architectures,is introduced in this work.The software module and information flow of the motion control system of PDAUV and a novel neural network-based control(NNC) are also covered.Besides,a real-time identification method based on neural network is used to realize system identification.The tank experiments and sea trials are carried out to verify the feasibility and capability of PDAUV control system to complete underwater pipeline detection task.
基金Project (No.2002CB312200) supported by the National Basic Research Program (973) of China
文摘This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.
文摘Motion controller plays a dominant role in motion control system. With the progress and improvement of motion control technology, the research and application of open, high-performance, low-cost and universal embedded motion controller becomes the necessity of the market. The major objective of the paper is to establish the basic software and hardware platform of a high-performance, low-cost and universal embedded motion controller and study the application. And the paper proposes the idea of developing a low-cost and economic touchscreen motion controller, which provides valuable reference for the relevant research and development in China.
基金the National Science Foundation under Grant No.50879014,No.50909025
文摘To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy.
基金Funded by the National Natural Science Foundation of China(U1233107)Civil Aviation Science and Technology Innovation Project of China(MHRD20140210)
文摘Motion simulator usually appears the phenomenon of false cues and the workspace is limited in the process of washout. The proposed washout algorithm combines fuzzy logic control with the vestibular system to design the tilt coordination fuzzy adaptive filter, in order to minimize the vestibular sensory error below the human perception threshold. Owing to tilt coordination angular velocity limiter, the loss of low-pass acceleration must be compensated by the acceleration transform model. The translational channel decreases the possibility of the workspace beyond limitation and expands the scope of motion platform simulating input acceleration by using third-order filter. The simulation results show that the proposed algorithm can effectively overcome the phase retardation of classical washout algorithm, and then prevent the produce of false cues, decrease the displacement of motion platform simultaneously; in addition, white Gaussian noise simulates large variations in acceleration. The proposed washout algorithm can have maximal extreme value of acceleration and accurate simulating performance in general. It also proves that the proposed washout algorithm has a strong adaptability and reliability, which can effectively improve the dynamic fidelity for motion simulator.
基金supported by the National Natural Science Foundation of China(Grant Nos.51325502 and 51405175)the National Basic Research Program of China("973"Project)(Grant No.2011CB706804)the National Science and Technology Major Projects of China(Grant No.2012ZX04001-012-01-05)
文摘The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.