Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s-+τ) - BH(S), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly deriv...Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s-+τ) - BH(S), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly derive the exact tail asymptoties for the maximum MH*(T) = max(τ,s)∈[a,b]×[0,T] ZH(τ, s)/τH of the standardised fractional Brownian motion field, with any fixed 0 〈 a 〈 b 〈 ∞ and T 〉 0; and we, furthermore, extend the obtained result to the ease that T is a positive random variable independent of {BH(s), s ≥ 0}. As a by-product, we obtain the Gumbel limit law for MH*r(T) as T →∞.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11326175 and 71471090)Natural Science Foundation of Zhejiang Province of China(Grant No.LQ14A010012)+2 种基金Research Start-up Foundation of Jiaxing University(Grant No.70512021)China Postdoctoral Science Foundation(Grant No.2014T70449)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20131339)
文摘Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s-+τ) - BH(S), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly derive the exact tail asymptoties for the maximum MH*(T) = max(τ,s)∈[a,b]×[0,T] ZH(τ, s)/τH of the standardised fractional Brownian motion field, with any fixed 0 〈 a 〈 b 〈 ∞ and T 〉 0; and we, furthermore, extend the obtained result to the ease that T is a positive random variable independent of {BH(s), s ≥ 0}. As a by-product, we obtain the Gumbel limit law for MH*r(T) as T →∞.