The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forc...The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.展开更多
Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation...Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation process that occurred on 18-20 August 2010, with clear nocturnal peaks -- is chosen as a case to tentatively explore how the convection associated with convectivescale precipitation is initiated and propagated. By utilizing the vertical momentum equation from the viewpoint of separating perturbation pressure into dynamic and thermal parts, it is demonstrated that the vertical momentum is induced by the imbalance of several forces, including the dynamic/buoyant part of the perturbation pressure gradient force and the buoyancy force, with the latter dominating during the nocturnal-peak period. Although a negative value of the dynamic perturbation pressure gradient force partly offsets the positive buoyant forcing inside the strong updraft, the pattern of vertical motion tendency is largely attributable to its buoyancy because of its larger magnitude. Relative to the buoyancy component, the dynamic part of the vertical perturbation pressure gradient is also examined, revealing a smaller order of magnitude. Thus, it is the thermal effect that should be responsible for the initiation and propagation of convection. As for the convective-scale precipitation, it always presents a trailing morphology relative to the strong leading-side updraft. Furthermore, overlapping strong signals of vertical motion and its tendency point towards strong precipitation in the future.展开更多
Infrasonic waves (frequency 〈 2o Hz) are generated during the formation and movement of debris flows, traveling in air with a speed far higher than that of the debris-flow movement. Infrasound monitoring and locali...Infrasonic waves (frequency 〈 2o Hz) are generated during the formation and movement of debris flows, traveling in air with a speed far higher than that of the debris-flow movement. Infrasound monitoring and localization of infrasonic waves can serve as warning properties for debris-flows. Based on the characteristics of infrasonic signals, this study presents a three-point array of infrasound sensors as time-synchronous multiple sensors for acquiring signals. In the meantime, the signals are sorted by mutual correlation of signals to figure out their latency, and by means of array coordinating to Locate the sound source to realize the monitoring and positioning of a debris-flows hazard. The method has been in situ tested and has been proven to be accurate in monitoring debris-flow occurrences and determining their positions, which is particularly effective for pre-event warning of debris-flow hazards.展开更多
The rotating pipe fluid in the crossed electric and magnetic field not only suffered the forces in the steady condition, but also suffered Coriolis force, centrifugal force because of rotation and electromagnetic volu...The rotating pipe fluid in the crossed electric and magnetic field not only suffered the forces in the steady condition, but also suffered Coriolis force, centrifugal force because of rotation and electromagnetic volume force. The motion equation of fluid and the hydrokinetics equations of rotating pipe were described in the Cartesians coordinates. The equations showed that the solutions to hydrokinetics equations of rotating pipe in the crossed electric and magnetic electromagnetic field were highly complicated and numerical calculations were also astronomical. The pressure distribution and temperature distribution of one dimension were solved using the electromagnetic equations set. The results showed that the fluid in rotating pipe was in the asymmetrical pressure field and temperature field because it was in the energy exchange and thermo-electrical coupling course. The primary characteristic of flow course could be expressed using the proposed hydrokinetics equations.展开更多
In this paper, we propose a new cellular automaton model, which is based on NaSch traffic model. In our method, when a car has a larger velocity, if the gap between the car and its leading car is not enough large, it ...In this paper, we propose a new cellular automaton model, which is based on NaSch traffic model. In our method, when a car has a larger velocity, if the gap between the car and its leading car is not enough large, it will decrease. The aim is that the following car has a buffer space to decrease its velocity at the next time, and then avoid to decelerate too high. The simulation results show that using our model, the ear deceleration is realistic, and is closer to the field measure than that of NaSch model.展开更多
To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for desig...To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for designing a new robotic helical milling hole system, which could further improve robotic hole-making ability in airplane digital assembly. After analysis on the characteristics of helical milling hole, advantages and limitations of two typical robotic helical milling hole systems were summarized. Then, vector model of helical milling hole movement was built on vector analysis method. Finally, surface roughness calculation formula was deduced according to the movement principle of helical milling hole, then the influence of main technological parameters on surface roughness was analyzed. Analysis shows that theoretical surface roughness of hole becomes poor with the increase of tool speed ratio and revolution radius. Meanwhile, the roughness decreases according to the increase of tool teeth number. The research contributes greatly to the construction of roughness prediction model in helical milling hole.展开更多
Due to the mobility of mobile hosts,checkpoints and message logs of the computing process may disperseover different mobile support stations in the checkpointing and rollback recovery protocol for mobilecomputing.Thre...Due to the mobility of mobile hosts,checkpoints and message logs of the computing process may disperseover different mobile support stations in the checkpointing and rollback recovery protocol for mobilecomputing.Three existing checkpoint handoff schemes do not give well consideration to the efficiency offailure-free process execution and the recovery speed of the failure process at the same time.A dynamicadaptive handoff management of the checkpointing and rollback recovery protocol for mobile computing isproposed in this paper.According to the individual feature and current state of each mobile host,differentimplementations are selected dynamically to complete the handoff process upon the handoff event.Performance analyses show that the proposed handoff management incurs a low loss of performance duringfailure-free and achieves a quick recovery upon the process fault.展开更多
The given investigation presents the results of estimating the water circulation in the water area of the Bering Sea and the Sea of Okhotsks, considering the influence of various types of the atmospheric processes. To...The given investigation presents the results of estimating the water circulation in the water area of the Bering Sea and the Sea of Okhotsks, considering the influence of various types of the atmospheric processes. To solve the given problem it is used a hydrodynamic model calculating the integral functions of the flow from the surface to the bottom. By results of calculations, the maps of the integral water circulation were built for the following types of atmospheric circulation: "north-western" and "okhotsk-aleutian". In accordance with the performed calculations for the water area being studied, the hydrodynamic structures are distinguished both non-depending and depending on the type of the atmospheric circulation. The non-depending structures are characterized by the cyclonic activity in the Bering Sea and the Sea of Okhotsk in whole. Hydrodynamic structures depending on types of the atmospheric circulation have their peculiarities in the spatial-temporal distribution.展开更多
The equations of motion of a bubble, expanding adiabatically through an incompressible viscous fluid, are deduced when the centre of the bubble moves in a vertical plane in the presence of gravitational acceleration, ...The equations of motion of a bubble, expanding adiabatically through an incompressible viscous fluid, are deduced when the centre of the bubble moves in a vertical plane in the presence of gravitational acceleration, acting vertically downwards. The non-linear equations of motion obtained are solved numerically for different values of the various parameters of the problem. The path traced by the centre of the bubble and velocity of the centre, the change of radius R with time, and the influence of the buoyancy force, which is experienced by the expanding bubble for different values of the gravitational acceleration on these quantities, are investigated. The radius R(t) of the bubble is found to vary periodically with time when the acceleration due to gravity is small. But when the acceleration due to gravity increases, this periodicity in the value of R(t) with t is lost. The influence of viscosity in determining the periodicity of the bubble motion is also investigated.展开更多
A Lagrangian tracer model is set up for Hangzhou Bay based on Coupled Hydrodynamical Ecological model for Regional Shelf Sea (COHERENS). The study area is divided into eight subdomains to identify the dominant physica...A Lagrangian tracer model is set up for Hangzhou Bay based on Coupled Hydrodynamical Ecological model for Regional Shelf Sea (COHERENS). The study area is divided into eight subdomains to identify the dominant physical processes, and the studied periods are March (the dry season) and July (the wet season). The model performance has been first verified by sea-surface elevation and tidal current observations at several stations. Eight tracer experiments are designed and Lagrangian particle tracking is simulated to examine the impact of physical processes (tide, wind and river runoff) on the transport of passive tracer released within the surface layer. Numerical simulations and analysis indicate that: (1) wind does not change the tracer distribution after 30 days except for those released from the south area of the bay during the wet season; (2) the tide and the Qiantang River runoff are important for particle transport in the head area of the bay; (3) the Changjiang River runoff affects the tracer transport at the mouth of the bay, and its impact is smaller in the dry season than in the wet season.展开更多
The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ...The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ciliated tips in the presence of heat and mass transfer. The effects of viscous dissipation are also considered. The flow equations of non-Newtonian fluid for the two-dimensional tube in cylindrical coordinates are simplified using the low Reynolds number and long wave-length approximations. The main equations for Jeffrey six constant fluid are considered in cylindrical coordinates system. The resulting nonlinear problem is solved using the regular perturbation technique in terms of a variant of small dimensionless parameter α. The results of the solutions for velocity, temperature and concentration field are presented graphically. B_k is Brinkman number, ST is soret number, and SH is the Schmidth number. Outcome for the longitudinal velocity, pressure rise, pressure gradient and stream lines are represented through graphs. In the history, the viscous-dissipation effect is usually represented by the Brinkman number.展开更多
High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the env...High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the environment wind appears,crosswind effects must be considered.Aerodynamic design of high-speed trains mainly aims at the drag,lift,moment,impulse pressure waves,aerodynamic noise,etc.at typical running conditions.In the paper,the aerodynamic design processes of CRH380A and 380B are introduced and the aerodynamic performances of different designs are analyzed and compared.Wind tunnel experiments and running tests indicate that the new generation of high-speed trains have excellent aerodynamic performances.展开更多
A one-equation turbulence model which relies on the turbulent kinetic energy transport equation has been developed to predict the flow properties of the recirculating flows. The turbulent eddy-viscosity coefficient is...A one-equation turbulence model which relies on the turbulent kinetic energy transport equation has been developed to predict the flow properties of the recirculating flows. The turbulent eddy-viscosity coefficient is computed from a recalibrated Bradshaw's assumption that the constant a1= 0.31 is recalibrated to a function based on a set of direct numerical simulation(DNS) data. The values of dissipation of turbulent kinetic energy consist of the near-wall part and isotropic part, and the isotropic part involves the von Karman length scale as the turbulent length scale. The performance of the new model is evaluated by the results from DNS for fully developed turbulence channel flow with a wide range of Reynolds numbers. However, the computed result of the recirculating flow at the separated bubble of NACA4412 demonstrates that an increase is needed on the turbulent dissipation, and this leads to an advanced tuning on the self-adjusted function. The improved model predicts better results in both the non-equilibrium and equilibrium flows, e.g. channel flows, backward-facing step flow and hump in a channel.展开更多
Potential vorticity(PV)has been widely applied as a tracer because of its property of conservation in frictionless,dry adiabatic flow.However,PV itself is more effective in describing the slow-manifold flow at large s...Potential vorticity(PV)has been widely applied as a tracer because of its property of conservation in frictionless,dry adiabatic flow.However,PV itself is more effective in describing the slow-manifold flow at large scale.Therefore,we wish to find a materially conserved invariant other than PV to diagnose severe weather such as growing and mature tropical cyclones,whose velocity and dynamic pressure vary rapidly and locally.Starting from the absolute motion equation after elimination of the pressure gradient term by introducing moist entropy and moist enthalpy,the baroclinic Ertel-Rossby invariant(ERI)in moist flow is derived by the Weber transformation.Furthermore,the material conservation property of moist ERI is proven.Besides the traditional moist potential vorticity(MPV)term,the invariant includes the moisture factor that is excluded in dry ERI and the term related to gradients of pressure,kinetic energy and potential energy that reflects the"fast-manifold"property.Therefore,it is more complete to describe the fast motions off the slow manifold for severe weather than is the MPV term.The moist ERI is then applied to diagnose a triple-typhoon system,and is compared with MPV and dry ERI.Contrastive analysis shows that moist ERI is a better tool to diagnose the movements and intensity variations of several coexisting typhoons.The moist ERI can signify the movement and development of a multi-typhoon system.It has wide application prospects for a real moist atmosphere.展开更多
We calculated the fractal dimensions Db of the perimeter of tropical cyclone(TC)Dan based on the satellite GMS-5 infrared sensor images from 1800 UTC,1 October 1999 to 1200 UTC,9 October 1999.The fractal dimensions Db...We calculated the fractal dimensions Db of the perimeter of tropical cyclone(TC)Dan based on the satellite GMS-5 infrared sensor images from 1800 UTC,1 October 1999 to 1200 UTC,9 October 1999.The fractal dimensions Db were used to characterize objectively the temporal change of TC complex structure.Our results show that the change of fractal dimension during TC Dan motion can be divided into three stages.The statistically significant difference does not exist either between Dm1 and DL or between Dm3 and DL,but it exists between Dm2 and DL,where Dmi denotes the mean value of Db in i-th stage(i=1,2 and3);DL denotes Lovejoy’s fractal dimension calculated based on satellite and radar data within the size range(1–1.2×106 km2),which is used as a"normal value"of the fractal dimension of the cumulus cloud perimeter for the global tropical region.TC Dan turns to the north from the west abruptly at the end of the second stage.The emergence of the second stage with high fractal dimensions may be viewed as a possible premonition for the track turning.Our results also show that there are two kinds of processes resulting in the translation from the first stage to the second stage.One is the interaction of TC circulation and an adjacent small scale convective cloud cluster,causing to the complexity increase of a local segment of the perimeter.The other includes the fragmentation of a strong convective area within the TC inner region,the self-organization of the small strong convective cloud clusters,the emergence,development,and merger of the small scale non-convective holes,and the formation of a gap of the perimeter,causing to the complexity increase of the whole TC perimeter.展开更多
The modulation of turbulence by particles has been rigorously investigated in the literature yielding either a reduction or an enhancement of the turbulent kinetic energy at different spatial length scales.However,a g...The modulation of turbulence by particles has been rigorously investigated in the literature yielding either a reduction or an enhancement of the turbulent kinetic energy at different spatial length scales.However,a general description of the turbulence modulation in multiphase flows due to the presence of an interphase force has attracted less attention.In this paper,we investigate the turbulent modulation for interfacial and fluid-particle flows analytically and numerically,where surface tension and drag define the interphase coupling,respectively.It is shown that surface tension and drag appear as additional production/dissipation terms in the transport equations for the turbulent kinetic energies(TKE),which is of particular importance for the turbulence modelling of multiphase flows.Furthermore,we study the modulation of turbulence in decaying homogenous isotropic turbulence(HIT)for both types of multiphase flow.The results clearly unveil that in both cases the energy is reduced at large scales,while the small-scale energy is enhanced compared to single-phase flows.Particularly,at large scales surface tension works against the turbulent eddies and hinders the ejection of droplet from the corrugated interface.In contrast,at the small scales,the surface tension force and the velocity fluctuations are aligned leading to an enhancement of the energy.In the case of fluid-particle flows,particles retain their energy longer than the surrounding fluid increasing the energy at the small scales,while at the large scales the particles do not follow exactly the surrounding fluid reducing its energy.For the latter effect,a considerable dependence on the particle Stokes number is found.展开更多
基金Supported by the NationaJ Natural Science Foundation of China (21106176), President Fund of GUCAS (Y15101JY00), China Postdoctoral Science Foundation (2012T50155) and National Basic Research Program of China (2009CB219903).
文摘The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.
基金supported by the National Department Public Benefit Research Foundation[grant number GYHY201406003]the Open Research Fund Program of the Plateau Atmosphere and Environment Key Laboratory of Sichuan Province[grant number PAEKL-2015-K3]+2 种基金the National Natural Science Foundation of China[grant numbers 413750544157506441375052]
文摘Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation process that occurred on 18-20 August 2010, with clear nocturnal peaks -- is chosen as a case to tentatively explore how the convection associated with convectivescale precipitation is initiated and propagated. By utilizing the vertical momentum equation from the viewpoint of separating perturbation pressure into dynamic and thermal parts, it is demonstrated that the vertical momentum is induced by the imbalance of several forces, including the dynamic/buoyant part of the perturbation pressure gradient force and the buoyancy force, with the latter dominating during the nocturnal-peak period. Although a negative value of the dynamic perturbation pressure gradient force partly offsets the positive buoyant forcing inside the strong updraft, the pattern of vertical motion tendency is largely attributable to its buoyancy because of its larger magnitude. Relative to the buoyancy component, the dynamic part of the vertical perturbation pressure gradient is also examined, revealing a smaller order of magnitude. Thus, it is the thermal effect that should be responsible for the initiation and propagation of convection. As for the convective-scale precipitation, it always presents a trailing morphology relative to the strong leading-side updraft. Furthermore, overlapping strong signals of vertical motion and its tendency point towards strong precipitation in the future.
基金supported by the National Natural Science Foundation of China(Grant No.41501114)the General Project of Education Department in Sichuan Province(16ZB0104)the Science and Technology Service Network Initiative(No.KFJ-SW-STS-180)
文摘Infrasonic waves (frequency 〈 2o Hz) are generated during the formation and movement of debris flows, traveling in air with a speed far higher than that of the debris-flow movement. Infrasound monitoring and localization of infrasonic waves can serve as warning properties for debris-flows. Based on the characteristics of infrasonic signals, this study presents a three-point array of infrasound sensors as time-synchronous multiple sensors for acquiring signals. In the meantime, the signals are sorted by mutual correlation of signals to figure out their latency, and by means of array coordinating to Locate the sound source to realize the monitoring and positioning of a debris-flows hazard. The method has been in situ tested and has been proven to be accurate in monitoring debris-flow occurrences and determining their positions, which is particularly effective for pre-event warning of debris-flow hazards.
文摘The rotating pipe fluid in the crossed electric and magnetic field not only suffered the forces in the steady condition, but also suffered Coriolis force, centrifugal force because of rotation and electromagnetic volume force. The motion equation of fluid and the hydrokinetics equations of rotating pipe were described in the Cartesians coordinates. The equations showed that the solutions to hydrokinetics equations of rotating pipe in the crossed electric and magnetic electromagnetic field were highly complicated and numerical calculations were also astronomical. The pressure distribution and temperature distribution of one dimension were solved using the electromagnetic equations set. The results showed that the fluid in rotating pipe was in the asymmetrical pressure field and temperature field because it was in the energy exchange and thermo-electrical coupling course. The primary characteristic of flow course could be expressed using the proposed hydrokinetics equations.
基金The project supported by .National Natural Science Foundation of China under Grant No. 70471088 and the Science and Technology Foundation of Beijing Jiaotong University under Grant No. 2004SM026
文摘In this paper, we propose a new cellular automaton model, which is based on NaSch traffic model. In our method, when a car has a larger velocity, if the gap between the car and its leading car is not enough large, it will decrease. The aim is that the following car has a buffer space to decrease its velocity at the next time, and then avoid to decelerate too high. The simulation results show that using our model, the ear deceleration is realistic, and is closer to the field measure than that of NaSch model.
基金Foundation item: Projects(50975141, 51005118) supported by the National Natural Science Foundation of China Projects(20091652018, 2010352005) supported by Aviation Science Fund of China Project(YKJ11-001) supported by Key Program of Nanjing College of Information Technology Institute, China
文摘To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for designing a new robotic helical milling hole system, which could further improve robotic hole-making ability in airplane digital assembly. After analysis on the characteristics of helical milling hole, advantages and limitations of two typical robotic helical milling hole systems were summarized. Then, vector model of helical milling hole movement was built on vector analysis method. Finally, surface roughness calculation formula was deduced according to the movement principle of helical milling hole, then the influence of main technological parameters on surface roughness was analyzed. Analysis shows that theoretical surface roughness of hole becomes poor with the increase of tool speed ratio and revolution radius. Meanwhile, the roughness decreases according to the increase of tool teeth number. The research contributes greatly to the construction of roughness prediction model in helical milling hole.
基金Supported by the National Natural Science Foundation of China (No. 60873138)Postdoctoral Scientific Research Foundation of Heilongjiang (No. LBH-008124)the Fundamental Research Funds for the Central Universities (No. HEUCFT1007)
文摘Due to the mobility of mobile hosts,checkpoints and message logs of the computing process may disperseover different mobile support stations in the checkpointing and rollback recovery protocol for mobilecomputing.Three existing checkpoint handoff schemes do not give well consideration to the efficiency offailure-free process execution and the recovery speed of the failure process at the same time.A dynamicadaptive handoff management of the checkpointing and rollback recovery protocol for mobile computing isproposed in this paper.According to the individual feature and current state of each mobile host,differentimplementations are selected dynamically to complete the handoff process upon the handoff event.Performance analyses show that the proposed handoff management incurs a low loss of performance duringfailure-free and achieves a quick recovery upon the process fault.
文摘The given investigation presents the results of estimating the water circulation in the water area of the Bering Sea and the Sea of Okhotsks, considering the influence of various types of the atmospheric processes. To solve the given problem it is used a hydrodynamic model calculating the integral functions of the flow from the surface to the bottom. By results of calculations, the maps of the integral water circulation were built for the following types of atmospheric circulation: "north-western" and "okhotsk-aleutian". In accordance with the performed calculations for the water area being studied, the hydrodynamic structures are distinguished both non-depending and depending on the type of the atmospheric circulation. The non-depending structures are characterized by the cyclonic activity in the Bering Sea and the Sea of Okhotsk in whole. Hydrodynamic structures depending on types of the atmospheric circulation have their peculiarities in the spatial-temporal distribution.
文摘The equations of motion of a bubble, expanding adiabatically through an incompressible viscous fluid, are deduced when the centre of the bubble moves in a vertical plane in the presence of gravitational acceleration, acting vertically downwards. The non-linear equations of motion obtained are solved numerically for different values of the various parameters of the problem. The path traced by the centre of the bubble and velocity of the centre, the change of radius R with time, and the influence of the buoyancy force, which is experienced by the expanding bubble for different values of the gravitational acceleration on these quantities, are investigated. The radius R(t) of the bubble is found to vary periodically with time when the acceleration due to gravity is small. But when the acceleration due to gravity increases, this periodicity in the value of R(t) with t is lost. The influence of viscosity in determining the periodicity of the bubble motion is also investigated.
基金Supported by the Natural Science Foundation of China (No.40576080)National High Technology Research and Development Program of China (863 Program, No. 2007AA12Z182)
文摘A Lagrangian tracer model is set up for Hangzhou Bay based on Coupled Hydrodynamical Ecological model for Regional Shelf Sea (COHERENS). The study area is divided into eight subdomains to identify the dominant physical processes, and the studied periods are March (the dry season) and July (the wet season). The model performance has been first verified by sea-surface elevation and tidal current observations at several stations. Eight tracer experiments are designed and Lagrangian particle tracking is simulated to examine the impact of physical processes (tide, wind and river runoff) on the transport of passive tracer released within the surface layer. Numerical simulations and analysis indicate that: (1) wind does not change the tracer distribution after 30 days except for those released from the south area of the bay during the wet season; (2) the tide and the Qiantang River runoff are important for particle transport in the head area of the bay; (3) the Changjiang River runoff affects the tracer transport at the mouth of the bay, and its impact is smaller in the dry season than in the wet season.
文摘The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ciliated tips in the presence of heat and mass transfer. The effects of viscous dissipation are also considered. The flow equations of non-Newtonian fluid for the two-dimensional tube in cylindrical coordinates are simplified using the low Reynolds number and long wave-length approximations. The main equations for Jeffrey six constant fluid are considered in cylindrical coordinates system. The resulting nonlinear problem is solved using the regular perturbation technique in terms of a variant of small dimensionless parameter α. The results of the solutions for velocity, temperature and concentration field are presented graphically. B_k is Brinkman number, ST is soret number, and SH is the Schmidth number. Outcome for the longitudinal velocity, pressure rise, pressure gradient and stream lines are represented through graphs. In the history, the viscous-dissipation effect is usually represented by the Brinkman number.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB711101)the National Hi-Tech Research and Development Program of China ("863" Project)(Grant No. 2009BAQG12A03)
文摘High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the environment wind appears,crosswind effects must be considered.Aerodynamic design of high-speed trains mainly aims at the drag,lift,moment,impulse pressure waves,aerodynamic noise,etc.at typical running conditions.In the paper,the aerodynamic design processes of CRH380A and 380B are introduced and the aerodynamic performances of different designs are analyzed and compared.Wind tunnel experiments and running tests indicate that the new generation of high-speed trains have excellent aerodynamic performances.
基金supported by the National Basic Research Program of China(Grant No.2014CB744804)
文摘A one-equation turbulence model which relies on the turbulent kinetic energy transport equation has been developed to predict the flow properties of the recirculating flows. The turbulent eddy-viscosity coefficient is computed from a recalibrated Bradshaw's assumption that the constant a1= 0.31 is recalibrated to a function based on a set of direct numerical simulation(DNS) data. The values of dissipation of turbulent kinetic energy consist of the near-wall part and isotropic part, and the isotropic part involves the von Karman length scale as the turbulent length scale. The performance of the new model is evaluated by the results from DNS for fully developed turbulence channel flow with a wide range of Reynolds numbers. However, the computed result of the recirculating flow at the separated bubble of NACA4412 demonstrates that an increase is needed on the turbulent dissipation, and this leads to an advanced tuning on the self-adjusted function. The improved model predicts better results in both the non-equilibrium and equilibrium flows, e.g. channel flows, backward-facing step flow and hump in a channel.
基金supported by the National Basic Research Program of China(Grant No.2013CB430105)the National Natural Science Foundation of China(Grant Nos.41375054,41105027,40930950&40805001)the Opening Foundation of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,China(Grant No.2012LASW-B02)
文摘Potential vorticity(PV)has been widely applied as a tracer because of its property of conservation in frictionless,dry adiabatic flow.However,PV itself is more effective in describing the slow-manifold flow at large scale.Therefore,we wish to find a materially conserved invariant other than PV to diagnose severe weather such as growing and mature tropical cyclones,whose velocity and dynamic pressure vary rapidly and locally.Starting from the absolute motion equation after elimination of the pressure gradient term by introducing moist entropy and moist enthalpy,the baroclinic Ertel-Rossby invariant(ERI)in moist flow is derived by the Weber transformation.Furthermore,the material conservation property of moist ERI is proven.Besides the traditional moist potential vorticity(MPV)term,the invariant includes the moisture factor that is excluded in dry ERI and the term related to gradients of pressure,kinetic energy and potential energy that reflects the"fast-manifold"property.Therefore,it is more complete to describe the fast motions off the slow manifold for severe weather than is the MPV term.The moist ERI is then applied to diagnose a triple-typhoon system,and is compared with MPV and dry ERI.Contrastive analysis shows that moist ERI is a better tool to diagnose the movements and intensity variations of several coexisting typhoons.The moist ERI can signify the movement and development of a multi-typhoon system.It has wide application prospects for a real moist atmosphere.
基金supported by the National Natural Science Foundation of China(Grant Nos.40975036,40921160381)the Projects for Public Welfare(Meteorology)of China(Grant No.GYHY201006008)
文摘We calculated the fractal dimensions Db of the perimeter of tropical cyclone(TC)Dan based on the satellite GMS-5 infrared sensor images from 1800 UTC,1 October 1999 to 1200 UTC,9 October 1999.The fractal dimensions Db were used to characterize objectively the temporal change of TC complex structure.Our results show that the change of fractal dimension during TC Dan motion can be divided into three stages.The statistically significant difference does not exist either between Dm1 and DL or between Dm3 and DL,but it exists between Dm2 and DL,where Dmi denotes the mean value of Db in i-th stage(i=1,2 and3);DL denotes Lovejoy’s fractal dimension calculated based on satellite and radar data within the size range(1–1.2×106 km2),which is used as a"normal value"of the fractal dimension of the cumulus cloud perimeter for the global tropical region.TC Dan turns to the north from the west abruptly at the end of the second stage.The emergence of the second stage with high fractal dimensions may be viewed as a possible premonition for the track turning.Our results also show that there are two kinds of processes resulting in the translation from the first stage to the second stage.One is the interaction of TC circulation and an adjacent small scale convective cloud cluster,causing to the complexity increase of a local segment of the perimeter.The other includes the fragmentation of a strong convective area within the TC inner region,the self-organization of the small strong convective cloud clusters,the emergence,development,and merger of the small scale non-convective holes,and the formation of a gap of the perimeter,causing to the complexity increase of the whole TC perimeter.
基金This work was supported by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development. The authors further want to acknowledge the funding support of K1-MET GmbH, metallurgical competence center. The research programme of the K1-MET competence center is supported by COMET (Competence Center for Excellent Technologies), the Austrian programme for competence centers. COMET is funded by the Federal Ministry for Transport, Innovation and Technology, the Federal Ministry for Digital and Economic Affairs and the provinces of Upper Austria, Tyrol and Styria. Beside the public funding from COMET, this research project is partially financed by the industrial partners Primetals Technologies Austria GmbH, voestalpine Stahl Donawitz GmbH, RHI Magnesita GmbH and voestalpine Stahl GmbH.
文摘The modulation of turbulence by particles has been rigorously investigated in the literature yielding either a reduction or an enhancement of the turbulent kinetic energy at different spatial length scales.However,a general description of the turbulence modulation in multiphase flows due to the presence of an interphase force has attracted less attention.In this paper,we investigate the turbulent modulation for interfacial and fluid-particle flows analytically and numerically,where surface tension and drag define the interphase coupling,respectively.It is shown that surface tension and drag appear as additional production/dissipation terms in the transport equations for the turbulent kinetic energies(TKE),which is of particular importance for the turbulence modelling of multiphase flows.Furthermore,we study the modulation of turbulence in decaying homogenous isotropic turbulence(HIT)for both types of multiphase flow.The results clearly unveil that in both cases the energy is reduced at large scales,while the small-scale energy is enhanced compared to single-phase flows.Particularly,at large scales surface tension works against the turbulent eddies and hinders the ejection of droplet from the corrugated interface.In contrast,at the small scales,the surface tension force and the velocity fluctuations are aligned leading to an enhancement of the energy.In the case of fluid-particle flows,particles retain their energy longer than the surrounding fluid increasing the energy at the small scales,while at the large scales the particles do not follow exactly the surrounding fluid reducing its energy.For the latter effect,a considerable dependence on the particle Stokes number is found.