This article focuses on the study of stability of motion of the phase systems described by differential equations whose right-hand sides are periodic in the angular coordinate. The article deals with the mathematical ...This article focuses on the study of stability of motion of the phase systems described by differential equations whose right-hand sides are periodic in the angular coordinate. The article deals with the mathematical model which has been investigated for stability "in the large" using the second Lyapunov method. Based on the theoretical results obtained in the work,the computational experiments on concrete examples of electric power systems, which showedthe sufficient efficacy of the proposed method for the studied phase system, were conducted.展开更多
The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling contro...The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.展开更多
文摘This article focuses on the study of stability of motion of the phase systems described by differential equations whose right-hand sides are periodic in the angular coordinate. The article deals with the mathematical model which has been investigated for stability "in the large" using the second Lyapunov method. Based on the theoretical results obtained in the work,the computational experiments on concrete examples of electric power systems, which showedthe sufficient efficacy of the proposed method for the studied phase system, were conducted.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB035600)the National Natural Science Foundation of China(Grant No.51377121)
文摘The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.