Loess is widely distributed in China and the Loess Plateau is one of the major areas where strong earthquakes often take place. The seismic amplification effects were discovered in the Plateau during the Wenchuan Ms8....Loess is widely distributed in China and the Loess Plateau is one of the major areas where strong earthquakes often take place. The seismic amplification effects were discovered in the Plateau during the Wenchuan Ms8.0 earthquake and some other strong events. Based on earth tremor observation, borehole exploration and site seismic response analysis, the site effects of topography of Loess Yuan on ground motion were investigated in details. The earth tremor investigation shows that predominant frequencies at the bottom sites of Loess Yuan are greater than those at the top obviously. The sites seismic response analysis shows that the Loess Yuan may amplify peak ground acceleration (PGA) by 1.44 2.0 times. Therefore, site effects of mountains and loess topography on ground motion should be taken account into in seismic design in loess regions.展开更多
In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil ...In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that: (1) The scatter plot of ks generally obeys a normal distribution ; (2) ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; (3) for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; (4) the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China ( GB 18306-2001 ). Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper.展开更多
The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increas...The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. The development of this methodology includes three steps: (1) evaluation of the distribution of ground motion at a site; (2) evaluation of the distribution of system response; (3) evaluation of the probability of exceeding decision variables within a given time period, given appropriate damage measures. The work has taken a systematic approach to determine the impact of increasing levels of detail in site characterization on the accuracy of ground motion and site effects predictions. Complementary studies have investigated the use of the following models for evaluating site effects: (1) amplification factors defined on the basis of generalized site categories, (2) one-dimensional ground response analysis, and (3) two-dimensional ground response analysis for surface topography on ground motion. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. It focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements Down Hole (D-H), Cross Hole (C-H), Seismic Dilatometer Marchetti Test (SDMT) and by different variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic tests for soil characterization: Resonant Column Test (RCT), Cyclic Loading Torsional Shear Test (CLTST).展开更多
We consider a kind of site-dependent branching Brownian motions whose branching laws depend on the site-branching factor σ(·). We focus on the functional ergodic limits for the occupation time processes of the...We consider a kind of site-dependent branching Brownian motions whose branching laws depend on the site-branching factor σ(·). We focus on the functional ergodic limits for the occupation time processes of the models in IR. It is proved that the limiting process has the form of λζ(·), where A is the Lebesgue measure on R and ζ(·) is a real-valued process which is non-degenerate if and only if cr is integrable. When ζ(·) is non-degenerate, it is strictly positive for t 〉 0. Moreover, ζ converges to 0 in finite-dimensional distributions if the integral of a tends to infinity.展开更多
基金Foundation item: Projects(40902094, 50978239) supported by the National Natural Science Foundation of China Project(2012IESLZO1) supported by the Fund of the Institute of Earthquake Prediction, CEA, China
文摘Loess is widely distributed in China and the Loess Plateau is one of the major areas where strong earthquakes often take place. The seismic amplification effects were discovered in the Plateau during the Wenchuan Ms8.0 earthquake and some other strong events. Based on earth tremor observation, borehole exploration and site seismic response analysis, the site effects of topography of Loess Yuan on ground motion were investigated in details. The earth tremor investigation shows that predominant frequencies at the bottom sites of Loess Yuan are greater than those at the top obviously. The sites seismic response analysis shows that the Loess Yuan may amplify peak ground acceleration (PGA) by 1.44 2.0 times. Therefore, site effects of mountains and loess topography on ground motion should be taken account into in seismic design in loess regions.
基金supported by Shandong Institute of Earthquake Engineering(Natural Science Foundation of Shandong Province(Y2002E01)Shandong Science and Technology Development Project(2010GSF10806),China
文摘In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that: (1) The scatter plot of ks generally obeys a normal distribution ; (2) ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; (3) for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; (4) the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China ( GB 18306-2001 ). Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper.
文摘The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. The development of this methodology includes three steps: (1) evaluation of the distribution of ground motion at a site; (2) evaluation of the distribution of system response; (3) evaluation of the probability of exceeding decision variables within a given time period, given appropriate damage measures. The work has taken a systematic approach to determine the impact of increasing levels of detail in site characterization on the accuracy of ground motion and site effects predictions. Complementary studies have investigated the use of the following models for evaluating site effects: (1) amplification factors defined on the basis of generalized site categories, (2) one-dimensional ground response analysis, and (3) two-dimensional ground response analysis for surface topography on ground motion. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. It focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements Down Hole (D-H), Cross Hole (C-H), Seismic Dilatometer Marchetti Test (SDMT) and by different variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic tests for soil characterization: Resonant Column Test (RCT), Cyclic Loading Torsional Shear Test (CLTST).
基金supported by Innovation Program of Shanghai Municipal Education Commission(Grant No.13zz037)the Fundamental Research Funds for the Central Universities
文摘We consider a kind of site-dependent branching Brownian motions whose branching laws depend on the site-branching factor σ(·). We focus on the functional ergodic limits for the occupation time processes of the models in IR. It is proved that the limiting process has the form of λζ(·), where A is the Lebesgue measure on R and ζ(·) is a real-valued process which is non-degenerate if and only if cr is integrable. When ζ(·) is non-degenerate, it is strictly positive for t 〉 0. Moreover, ζ converges to 0 in finite-dimensional distributions if the integral of a tends to infinity.