When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is use...When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.展开更多
In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total...In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.展开更多
Based on their Euler poles, we calculated the relative velocities between every two plates in the typical global plate motion models, respectively, and estimated the area change along these boundaries. In our calculat...Based on their Euler poles, we calculated the relative velocities between every two plates in the typical global plate motion models, respectively, and estimated the area change along these boundaries. In our calculations, plates on both sides accommodated area changes depending on the boundary types: extensional, convergent or transform, so we can estimate area change of each plate and then globally. Our preliminary results show that the area of the southern hemisphere increased while that of the northern hemisphere decreased over the past I million years, and global area has increased by 26,000km^2 to 36,000km^2, which corresponds to the 160m - 250m increment on the Earth's radius if all these area increments are attributed to Earth's expansion. Taking the NUVEL-1 model as an example, of the 14 plates in this model, 11 are decreasing, but the global area has increased because of the larger increment amount from Africa, North America and Antarctica. Finally, we also discussed factors affecting the global area change such as subduction zone retreating and back-arc spreading.展开更多
The concept that "Exercise is Medicine" has been challenged by the rising prevalence of non-communicable chronic diseases (NCDs). This is partly due to the fact that the underlying mechanisms of how exercise influ...The concept that "Exercise is Medicine" has been challenged by the rising prevalence of non-communicable chronic diseases (NCDs). This is partly due to the fact that the underlying mechanisms of how exercise influences energy homeostasis and counteracts high-fat diets and physical inactivity is complex and remains relatively poorly understood on a molecular level. In addition to genetic polymorphisms in humans that lead to gross variations in responsiveness to exercise, adaptation in mitochondrial networks is central to physical activity, inactivity, and diet. To harness the benefits of exercise for NCDs, much work still needs to be done to improve health effectively on a societal level such as developing personalized exercise interventions aided by advances in high-throughput genomics, proteomics, and metabolomics. We propose that understanding the mitochondrial phenotype according to the molecular information of genotypes, lifestyles, and exercise responsiveness in individuals will optimize exercise effects for prevention of NCDs.展开更多
Nanoparticle movement near a surface is greatly influenced by electrostatic and Van der Waals forces between the particle and the surface,as well as by Brownian motion.In this paper,several precise equations are deriv...Nanoparticle movement near a surface is greatly influenced by electrostatic and Van der Waals forces between the particle and the surface,as well as by Brownian motion.In this paper,several precise equations are derived to describe the Van der Waals and electrostatic forces between a particle and a surface when the particle is removed from the surface.These include an equation for particle displacement under the electrostatic force,and a numerical calculation for particle displacement under the Van der Waals force.Finally,a kinematic model is constructed to describe the particle distribution under the effects of the electrostatic and Van der Waals forces,as well as the particle’s Brownian motion.The results show that increasing the multiply of the particle and surface zeta potential values and decreasing the ionic strength of the detergent can prevent a particle from redepositing onto a surface.展开更多
Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower bound...Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower boundary condition for Richards' equation will further affect the simulation results for soil moisture, water cycle, energy balance, and carbon biogeochemical processes. In this study, the soil water movement dynamic sub-model of a hydrologically based land surface model, the variable infiltration capacity (VIC) model, was modified using the finite difference method (FDM) to solve a mixed form of Richards' equation. In addition, the VIC model was coupled with a terrestrial biogeochemical model, the Carnegie Ames Stanford Approach model of carbon, nitrogen, and phosphorus (CASACNP model). The no-flux boundary (NB) and free-drainage boundary (FB) were selected to investigate their impacts on simulations of the water, energy, and soil carbon cycles based on the coupling model. The NB and FB had different influences on the water, energy, and soil carbon simulations. The water and energy simulations were more sensitive, while the soil carbon simulation was less sensitive to FB than to NB. Free-drainage boundary could result in lower soil moisture, evaporation, runoff, and heterotrophic respiration and higher surface soil temperature, sensible heat flux, and soil carbon content. The impact of the lower boundary condition on simulation would be greater with an increase in soil permeability. In the silt loam soil case, evaporation, runoff, and soil respiration of FB were nearly 169, 13%, and 1% smaller, respectively, compared to those of NB.展开更多
In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. Th...In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe_3O_4:S NPs exhibit a much better adsorption performance towards Pb(Ⅱ) than bare Fe_3O_4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(Ⅱ) by Fe_3O_4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis,and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(Ⅱ) adsorption. Thus, Fe_3O_4:S NPs are supposed to be a good adsorbents for Pb(Ⅱ) ions in environmental remediation.展开更多
Objectives: Surgical repair of Achilles tendon (AT) rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Ea...Objectives: Surgical repair of Achilles tendon (AT) rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=l 6) received postoperative cast immobilization; Group B (early motion group, n= 16) received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C). The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing two- dimensional polyacrylamide gel electrophoresis (2D-PAGE). PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF) and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI) protein database retrieval and then for bioinformatics analysis. Results: Amean of 446.33,436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were suc- cessfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1, pro-alpha-1 type 1 collagen, peroxiredoxin 1, alpha-l-antiproteinase E a-1 and MAD2L1 binding protein, etc. And some with the molecular chaperone, oxidative stress, energy metabolism, signal transduetion, coupled with the tendon cell expression and protein synthesis, proliferate, differentiate and are closely related to the AT healing. The GAPDH protein was further validated through Western blotting. It was indicated that some differentially expressed proteins were involved in various metabolism pathways and may play an important role in initial healing of AT rupture. Conclusion: Differentially expressed proteins in rabbit healing AT model may contribute to 3 days healing of AT rupture through a new mechanobiological mechanism due to the application of postoperative early kinesitherapy.展开更多
基金Project(51274188)supported by the National Natural Science Foundation of China
文摘When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.
文摘In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.
基金sponsored by the National Natural Science Foundation (40574047),China
文摘Based on their Euler poles, we calculated the relative velocities between every two plates in the typical global plate motion models, respectively, and estimated the area change along these boundaries. In our calculations, plates on both sides accommodated area changes depending on the boundary types: extensional, convergent or transform, so we can estimate area change of each plate and then globally. Our preliminary results show that the area of the southern hemisphere increased while that of the northern hemisphere decreased over the past I million years, and global area has increased by 26,000km^2 to 36,000km^2, which corresponds to the 160m - 250m increment on the Earth's radius if all these area increments are attributed to Earth's expansion. Taking the NUVEL-1 model as an example, of the 14 plates in this model, 11 are decreasing, but the global area has increased because of the larger increment amount from Africa, North America and Antarctica. Finally, we also discussed factors affecting the global area change such as subduction zone retreating and back-arc spreading.
基金supported by grants from the National Natural Science Foundation of China(No.31300977,31171142)Shanghai Pujiang Program(No.15PJC032)the Key Laboratory Construction Project of Adolescent Health Assessment and Exercise Intervention of Ministry of Education,China(No.40500-541235-14203/004)
文摘The concept that "Exercise is Medicine" has been challenged by the rising prevalence of non-communicable chronic diseases (NCDs). This is partly due to the fact that the underlying mechanisms of how exercise influences energy homeostasis and counteracts high-fat diets and physical inactivity is complex and remains relatively poorly understood on a molecular level. In addition to genetic polymorphisms in humans that lead to gross variations in responsiveness to exercise, adaptation in mitochondrial networks is central to physical activity, inactivity, and diet. To harness the benefits of exercise for NCDs, much work still needs to be done to improve health effectively on a societal level such as developing personalized exercise interventions aided by advances in high-throughput genomics, proteomics, and metabolomics. We propose that understanding the mitochondrial phenotype according to the molecular information of genotypes, lifestyles, and exercise responsiveness in individuals will optimize exercise effects for prevention of NCDs.
基金supported by the National Natural Science Foundation of China(Grant Nos.91323302 and 51205226)the Science Fund for Creative Research Groups(Grant No.51321092)
文摘Nanoparticle movement near a surface is greatly influenced by electrostatic and Van der Waals forces between the particle and the surface,as well as by Brownian motion.In this paper,several precise equations are derived to describe the Van der Waals and electrostatic forces between a particle and a surface when the particle is removed from the surface.These include an equation for particle displacement under the electrostatic force,and a numerical calculation for particle displacement under the Van der Waals force.Finally,a kinematic model is constructed to describe the particle distribution under the effects of the electrostatic and Van der Waals forces,as well as the particle’s Brownian motion.The results show that increasing the multiply of the particle and surface zeta potential values and decreasing the ionic strength of the detergent can prevent a particle from redepositing onto a surface.
基金supported by the National Science Foundation for Distinguished Young Scholars of China (No. 51309245)supported by the US Department of Energy and National Aeronautics and Space Administration
文摘Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower boundary condition for Richards' equation will further affect the simulation results for soil moisture, water cycle, energy balance, and carbon biogeochemical processes. In this study, the soil water movement dynamic sub-model of a hydrologically based land surface model, the variable infiltration capacity (VIC) model, was modified using the finite difference method (FDM) to solve a mixed form of Richards' equation. In addition, the VIC model was coupled with a terrestrial biogeochemical model, the Carnegie Ames Stanford Approach model of carbon, nitrogen, and phosphorus (CASACNP model). The no-flux boundary (NB) and free-drainage boundary (FB) were selected to investigate their impacts on simulations of the water, energy, and soil carbon cycles based on the coupling model. The NB and FB had different influences on the water, energy, and soil carbon simulations. The water and energy simulations were more sensitive, while the soil carbon simulation was less sensitive to FB than to NB. Free-drainage boundary could result in lower soil moisture, evaporation, runoff, and heterotrophic respiration and higher surface soil temperature, sensible heat flux, and soil carbon content. The impact of the lower boundary condition on simulation would be greater with an increase in soil permeability. In the silt loam soil case, evaporation, runoff, and soil respiration of FB were nearly 169, 13%, and 1% smaller, respectively, compared to those of NB.
基金supported by the National Natural Science Foundation of China (B21271179, 21607101)Program for New Century Excellent Talents in University (NCET-13-0364)+1 种基金China Postdoctoral Science Foundation Funded Project (2016M590363)State Key Program of National Natural Science Foundation of China (21436007)
文摘In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe_3O_4:S NPs exhibit a much better adsorption performance towards Pb(Ⅱ) than bare Fe_3O_4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(Ⅱ) by Fe_3O_4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis,and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(Ⅱ) adsorption. Thus, Fe_3O_4:S NPs are supposed to be a good adsorbents for Pb(Ⅱ) ions in environmental remediation.
基金This study was financially supported by the National Natural Science Foundation of China (No. 30760256).Acknowledgements We extend many thanks to Yang Fanyuan, Jin Hong, Yang Fenyin and Zhou Xinwen in Centre of Proteomics and Systems Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China. We also thank Zhang Yuanting, Zhang Binyin and Yin Xiulian in Institutes of Biomedical Sciences, Qinghua University, Beijing, China for their help in Western blotting analysis.
文摘Objectives: Surgical repair of Achilles tendon (AT) rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=l 6) received postoperative cast immobilization; Group B (early motion group, n= 16) received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C). The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing two- dimensional polyacrylamide gel electrophoresis (2D-PAGE). PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF) and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI) protein database retrieval and then for bioinformatics analysis. Results: Amean of 446.33,436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were suc- cessfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1, pro-alpha-1 type 1 collagen, peroxiredoxin 1, alpha-l-antiproteinase E a-1 and MAD2L1 binding protein, etc. And some with the molecular chaperone, oxidative stress, energy metabolism, signal transduetion, coupled with the tendon cell expression and protein synthesis, proliferate, differentiate and are closely related to the AT healing. The GAPDH protein was further validated through Western blotting. It was indicated that some differentially expressed proteins were involved in various metabolism pathways and may play an important role in initial healing of AT rupture. Conclusion: Differentially expressed proteins in rabbit healing AT model may contribute to 3 days healing of AT rupture through a new mechanobiological mechanism due to the application of postoperative early kinesitherapy.