In this paper, the analytical solutions of Schrodinger equation for Brownian motion in a double well potential are acquired by the homotopy analysis method and the Adomian decomposition method. Double well potential f...In this paper, the analytical solutions of Schrodinger equation for Brownian motion in a double well potential are acquired by the homotopy analysis method and the Adomian decomposition method. Double well potential for Brownian motion is always used to obtain the solutions of Fokker-P1anck equation known as the Klein-Kramers equation, which is suitable for separation and additive Hamiltonians. In essence, we could study the random motion of Brownian particles by solving Schr6dinger equation. The anaiytical results obtained from the two different methods agree with each other well The double well potentiai is affected by two parameters, which are analyzed and discussed in details with the aid of graphical illustrations. According to the final results, the shapes of the double well potential have significant influence on the probability density function.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.51276104,51476191
文摘In this paper, the analytical solutions of Schrodinger equation for Brownian motion in a double well potential are acquired by the homotopy analysis method and the Adomian decomposition method. Double well potential for Brownian motion is always used to obtain the solutions of Fokker-P1anck equation known as the Klein-Kramers equation, which is suitable for separation and additive Hamiltonians. In essence, we could study the random motion of Brownian particles by solving Schr6dinger equation. The anaiytical results obtained from the two different methods agree with each other well The double well potentiai is affected by two parameters, which are analyzed and discussed in details with the aid of graphical illustrations. According to the final results, the shapes of the double well potential have significant influence on the probability density function.