To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overc...To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.展开更多
To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show th...To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show that the ash content of feed is reduced by 10% 15% and the organic efficiency is up to 91.78% by using the active pulsing air separation technology. The gas solid flow in the active pulsing air classifier was simulated. Meanwhile, the characteristics of particle motion and the separation process of different particles were analyzed, and the mechanical structure of the classifier was also modified to achieve high separation efficiency. Therefore, a novel high-efficiency dry beneficiation technique was advanced for coarse coal slime.展开更多
The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the la...The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the lane- way conveyor belt fire scenes under two ventilating conditions. The parameters, including temperature-time histories, soot density, carbon monoxide and heat release rate, were simulated to characterize the mine fires at various ventilating speeds. A miner evacuation model affected by fire smoke movement was advanced to describe the miner evacuation behaviors, which can be divided into three stages. Based on the evacuation model coupled with the mine fire smoke movement, the available safety evacuation time for miners involved in coal mine fire located in different sites was estimated. Two evacuation patterns were advanced according to the ventilating speeds combined with the model of miner evacuation behaviors. The results show that the miners located between the inlet-air end and the air door in lane 1 should be evacuated to the inlet-air end and other miners involved in coal mine fire could choose the air door as the escaping destination, when the ventilation speed is greater than 3 m/s. Accordingly, the research can be used as references for the mine safety administration authorities to design the safety evacuation.展开更多
In this study,experimental and numerical simulation methods were combined to simulate the changing course of the temperature and velocity fields in nine different fire scenes. The characteristics of smoke movement in ...In this study,experimental and numerical simulation methods were combined to simulate the changing course of the temperature and velocity fields in nine different fire scenes. The characteristics of smoke movement in shafts with different fire source position factors(h/H) were quantitatively investigated,and the non-dimensional fitting function between the fire source position factors and the maximum temperature was deduced. The results showed that the location of the neutral plane moved upward as the fire source rose,and all the generated smoke spread to the upper areas;however,there was barely any smoke in the lower areas. The maximum temperature was inversely proportional to the fire source position factor;the higher the source position is,i.e. the higher the ratio factor is,the lower the maximum temperature is in the shaft. The experimental verification of the fire dynamics simulator(FDS) showed good results.展开更多
基金the National High Technology Research and Development Program of China (863 Program) (No. 2002AA616050).
文摘To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.
基金Projects(51221462,51134022,51074156)supported by the National Natural Science Foundation of ChinaProject(2012CB214904)supported by the National Basic Research Program of ChinaProject(20120095130001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show that the ash content of feed is reduced by 10% 15% and the organic efficiency is up to 91.78% by using the active pulsing air separation technology. The gas solid flow in the active pulsing air classifier was simulated. Meanwhile, the characteristics of particle motion and the separation process of different particles were analyzed, and the mechanical structure of the classifier was also modified to achieve high separation efficiency. Therefore, a novel high-efficiency dry beneficiation technique was advanced for coarse coal slime.
基金National Natural Science Foundation of China (51274205), the Doctoral Program Foundation of Ministry of Education the New Teacher Project (20070290022) and the Open Project of China University of Mining and Technology Resources and Mine Safety State Key Laboratory (S KLCRSM 10KFB 13).
文摘The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the lane- way conveyor belt fire scenes under two ventilating conditions. The parameters, including temperature-time histories, soot density, carbon monoxide and heat release rate, were simulated to characterize the mine fires at various ventilating speeds. A miner evacuation model affected by fire smoke movement was advanced to describe the miner evacuation behaviors, which can be divided into three stages. Based on the evacuation model coupled with the mine fire smoke movement, the available safety evacuation time for miners involved in coal mine fire located in different sites was estimated. Two evacuation patterns were advanced according to the ventilating speeds combined with the model of miner evacuation behaviors. The results show that the miners located between the inlet-air end and the air door in lane 1 should be evacuated to the inlet-air end and other miners involved in coal mine fire could choose the air door as the escaping destination, when the ventilation speed is greater than 3 m/s. Accordingly, the research can be used as references for the mine safety administration authorities to design the safety evacuation.
文摘In this study,experimental and numerical simulation methods were combined to simulate the changing course of the temperature and velocity fields in nine different fire scenes. The characteristics of smoke movement in shafts with different fire source position factors(h/H) were quantitatively investigated,and the non-dimensional fitting function between the fire source position factors and the maximum temperature was deduced. The results showed that the location of the neutral plane moved upward as the fire source rose,and all the generated smoke spread to the upper areas;however,there was barely any smoke in the lower areas. The maximum temperature was inversely proportional to the fire source position factor;the higher the source position is,i.e. the higher the ratio factor is,the lower the maximum temperature is in the shaft. The experimental verification of the fire dynamics simulator(FDS) showed good results.