Solar coronal loops are frequently accompanied by the field-aligned currents, which drive instabilities if the drift velocity u0 > v A the Alfv′en velocity. For our choice of parameters, the critical threshold val...Solar coronal loops are frequently accompanied by the field-aligned currents, which drive instabilities if the drift velocity u0 > v A the Alfv′en velocity. For our choice of parameters, the critical threshold value of u0/v A is ~ 3.0 for growth and the corresponding current filling factor ~ 10-3-10-4. Below this value we are no longer in the kinetic regime.The coronal loops also have short-scale density gradients within each loop. The electron resonance in the presence of density gradient causes the drift mode to grow. We study the effect of these two free energy sources, the electron drift and the density gradient, in the presence of temperature anisotropy T⊥_α > T∥_α. These effects simultaneously exist in the coronae. Using gyrokinetic theory, we investigate the influence of these effects, examine how they interplay with each other and study the consequent growth of the magnetosonic wave. We observe that kinetic instability driven by density gradient can be suppressed by field-aligned currents. The temperature anisotropy with chosen signatures causes further stabilizing effect. The results may prove useful to study the heating mechanism of solar coronal loops, acceleration of particles and confinement of particles in the thermonuclear reactors.展开更多
文摘Solar coronal loops are frequently accompanied by the field-aligned currents, which drive instabilities if the drift velocity u0 > v A the Alfv′en velocity. For our choice of parameters, the critical threshold value of u0/v A is ~ 3.0 for growth and the corresponding current filling factor ~ 10-3-10-4. Below this value we are no longer in the kinetic regime.The coronal loops also have short-scale density gradients within each loop. The electron resonance in the presence of density gradient causes the drift mode to grow. We study the effect of these two free energy sources, the electron drift and the density gradient, in the presence of temperature anisotropy T⊥_α > T∥_α. These effects simultaneously exist in the coronae. Using gyrokinetic theory, we investigate the influence of these effects, examine how they interplay with each other and study the consequent growth of the magnetosonic wave. We observe that kinetic instability driven by density gradient can be suppressed by field-aligned currents. The temperature anisotropy with chosen signatures causes further stabilizing effect. The results may prove useful to study the heating mechanism of solar coronal loops, acceleration of particles and confinement of particles in the thermonuclear reactors.