It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair,from which a method to constrain the integrable sys...It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair,from which a method to constrain the integrable system to a lower-dimensional or fewer variable integrable system is proposed.A direct result is that the n-soliton solutions of the KdV hierarchy can be completely depicted by a series of ordinary differential equations(ODEs),which may be gotten by a simple but unfamiliar Lax pair.Furthermore the AKNS hierarchy is constrained to a series of univariate integrable hierarchies.The key is a special form of Lax pair for the AKNS hierarchy.It is proved that under the constraints all equations of the AKNS hierarchy are linearizable.展开更多
Based on the corresponding theorem between dispersionless KP (dKP) hierarchy and h-dependent KP (hKP) hierarchy, a general formal representation of the recursion operators for dKP hierarchy under n-reduction is gi...Based on the corresponding theorem between dispersionless KP (dKP) hierarchy and h-dependent KP (hKP) hierarchy, a general formal representation of the recursion operators for dKP hierarchy under n-reduction is given in a systematical way from the corresponding hKP hierarchy. To illustrate this method, the recursion operators for dKP hierarchy under 2-reduction and 3-reduction are calculated in detail.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10735030Natural Science Foundation of Zhejiang Province under Grant Nos.R609077,Y6090592National Science Foundation of Ningbo City under Grant Nos.2009B21003,2010A610103, 2010A610095
文摘It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair,from which a method to constrain the integrable system to a lower-dimensional or fewer variable integrable system is proposed.A direct result is that the n-soliton solutions of the KdV hierarchy can be completely depicted by a series of ordinary differential equations(ODEs),which may be gotten by a simple but unfamiliar Lax pair.Furthermore the AKNS hierarchy is constrained to a series of univariate integrable hierarchies.The key is a special form of Lax pair for the AKNS hierarchy.It is proved that under the constraints all equations of the AKNS hierarchy are linearizable.
基金Supported by the Natural Science Foundation of China under Grant No.10971109
文摘Based on the corresponding theorem between dispersionless KP (dKP) hierarchy and h-dependent KP (hKP) hierarchy, a general formal representation of the recursion operators for dKP hierarchy under n-reduction is given in a systematical way from the corresponding hKP hierarchy. To illustrate this method, the recursion operators for dKP hierarchy under 2-reduction and 3-reduction are calculated in detail.