期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于轨迹数据的出租车运行模式识别及效益分析 被引量:1
1
作者 蔡宇阳 李伯钊 +1 位作者 牛彦芬 汪有为 《测绘地理信息》 CSCD 2023年第4期146-150,共5页
基于上海市出租车轨迹数据,使用Hadoop分布式计算框架对出租车GPS数据进行处理,以出租车为对象提取其轨迹,并计算出租车的载客平均距离、轨迹中心与城区中心距离与回转半径3个指标,采用k-means++模型分类并定义5种出租车运行模式。通过... 基于上海市出租车轨迹数据,使用Hadoop分布式计算框架对出租车GPS数据进行处理,以出租车为对象提取其轨迹,并计算出租车的载客平均距离、轨迹中心与城区中心距离与回转半径3个指标,采用k-means++模型分类并定义5种出租车运行模式。通过对比不同时间划分标准下各运行模式出租车的时间、里程载客率与收入情况,分析各类出租车在各时间段的运行效益与运行特征。 展开更多
关键词 出租车轨迹数据 运行模式识别 时空特征挖掘 出租车效益分析
原文传递
Action recognition using a hierarchy of feature groups
2
作者 周同驰 程旭 +3 位作者 李拟珺 徐勤军 周琳 吴镇扬 《Journal of Southeast University(English Edition)》 EI CAS 2015年第3期327-332,共6页
To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-t... To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the features with the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF (University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features, and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance. 展开更多
关键词 action recognition coherent motion pattern feature groups part-based representation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部