Behaviour detection models based on automata have been studied widely. By add- ing edge ε, the local automata are combined into global automata to describe and detect soft- ware behaviour. However, these methods in- ...Behaviour detection models based on automata have been studied widely. By add- ing edge ε, the local automata are combined into global automata to describe and detect soft- ware behaviour. However, these methods in- troduce nondeterminacy, leading to models that are imprecise or inefficient. We present a model of software Behaviour Detection based on Process Algebra and system call (BDPA). In this model, a system call is mapped into an action, and a function is mapped into a process We construct a process expression for each function to describe its behaviour. Without con- strutting automata or introducing nondeter- minacy, we use algebraic properties and algo- rithms to obtain a global process expression by combining the process expressions derived from each function. Behaviour detection rules and methods based on BDPA are determined by equivalence theory. Experiments demon- strate that the BDPA model has better preci- sion and efficiency than traditional methods.展开更多
A new algorithm for the stabilization or (possibly turbulent, chaotic) distributed systems,governed by linear or non linear systems of equations is presented.The SPA (Stabilization Parallel Algorithm) is based on a sy...A new algorithm for the stabilization or (possibly turbulent, chaotic) distributed systems,governed by linear or non linear systems of equations is presented.The SPA (Stabilization Parallel Algorithm) is based on a systematic parallel decompositionof the problem (related to arbitrarily overlapping decomposition of domains) and on a penaltyargument.SPA is presented here for the case of linear parabolic equations, with distributed or boundarycontrol. It extends to practically all linear and non linear evolution equations, as it will bepresented in several other publications.展开更多
基金supported by the Fund of National Natural Science Project under Grant No.61272125the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20121333110014the Hebei Provincial Natural Science Foundation under Grant No.F2011203234
文摘Behaviour detection models based on automata have been studied widely. By add- ing edge ε, the local automata are combined into global automata to describe and detect soft- ware behaviour. However, these methods in- troduce nondeterminacy, leading to models that are imprecise or inefficient. We present a model of software Behaviour Detection based on Process Algebra and system call (BDPA). In this model, a system call is mapped into an action, and a function is mapped into a process We construct a process expression for each function to describe its behaviour. Without con- strutting automata or introducing nondeter- minacy, we use algebraic properties and algo- rithms to obtain a global process expression by combining the process expressions derived from each function. Behaviour detection rules and methods based on BDPA are determined by equivalence theory. Experiments demon- strate that the BDPA model has better preci- sion and efficiency than traditional methods.
文摘A new algorithm for the stabilization or (possibly turbulent, chaotic) distributed systems,governed by linear or non linear systems of equations is presented.The SPA (Stabilization Parallel Algorithm) is based on a systematic parallel decompositionof the problem (related to arbitrarily overlapping decomposition of domains) and on a penaltyargument.SPA is presented here for the case of linear parabolic equations, with distributed or boundarycontrol. It extends to practically all linear and non linear evolution equations, as it will bepresented in several other publications.