Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal ener...Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.展开更多
Multiple-effect membrane distillation (MEMD) process for enriching semi-volatile organic acids from their individual aqueous solutions was performed by using a hollow fiber-based air gap membrane distillation (AGMD...Multiple-effect membrane distillation (MEMD) process for enriching semi-volatile organic acids from their individual aqueous solutions was performed by using a hollow fiber-based air gap membrane distillation (AGMD) module with the function of internal heat recovery. Aqueous solutions of glyoxylic acid, glycolic acid, lactic acid, pyrnvic acid, malonic acid and glutaric acid were used as model feed. For a feed of 1% (mass fraction), each acid could be enriched for 8--20 times, which depended on the surface tension of the concentrate. The operation performance of MEMD process was characterized by permeation flux J, performance ratio PR and acid rejection rate R. The effects of cold feed-in temperature, heated feed-in temperature, feed-in volumetric flow rate and feed-in concen- tration on MEMD performance were experimentally evaluated. Maximum values of J, PR and R were 4.8 L/(h-m2), 9.84 and 99.93%, respectively. Moreover, MEMD process demonstrated a fairly good stability in a long-term experiment lasting for 30 d when aqueous solution of 4% (mass fraction) lactic acid was used as a feed.展开更多
Idealized cycles of refrigerating machines with adiabatic and isothermal compression of refrigerant vapor were investigated. Energetic characteristics of cycles: specific mass and volume cooling capacity q0 and qv, w...Idealized cycles of refrigerating machines with adiabatic and isothermal compression of refrigerant vapor were investigated. Energetic characteristics of cycles: specific mass and volume cooling capacity q0 and qv, work of compression 1, refrigerating coefficient of performance e and power N for drive of compressor were compared. These characteristics were calculated for eight refrigerants at temperature of their condensation 30 ℃ and temperatures of boiling -15℃ and -30 ℃. The calculations show that the use of isothermal compression of refrigerant vapor ensures economy of energy during refrigerating machine operation.展开更多
In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) da...In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.展开更多
Accomodation of power system constraints with the market mechanism is encountered as a major challenge along the way toward implementation of different electricity market designs. Allocation of fixe or flow-dependent ...Accomodation of power system constraints with the market mechanism is encountered as a major challenge along the way toward implementation of different electricity market designs. Allocation of fixe or flow-dependent inter-zone trading capacities by the PX (power exchange) can not be accepted unreservedly. The paper is meant to show that a nodal electricity market design that is based on bids for local energy and a regulated transmission access including allocation of "entry-exit" transmission capacity would be the desired solution. The market players could easily optimize their portfolio while the TSOs (transmission system operators) are requested to mobilize the network's in-built flexibility to increase the cross zonal capacity. In the proposed market design, the PX's allocation of trading capacity is clearly separate from the TSO's management of the power system operational constraint5. Clear operator roles would enlarge access to electricity market as well as market integration of variable RESs (renewable energy sources) that are critically dependent on short notice access to regionat markets,展开更多
Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,d...Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,demonstrating both a hardware and a software implementation.With minor modifications to the hardware accelerators,latency can be reduced to half.Furthermore,we also propose a seminal and more efficient scheme,where we integrate the technology of encryption into the compression algorithm.Our new integrated optimization scheme reaches an increase of 1.6X by using parallel software scheme However,the security level of our new scheme is not desirable compare with previous ones.Fortunately,we prove that this does not affect the application of our schemes.展开更多
Distribution systems operators are often confronted with declined power quality, which can cause substantial economical losses. The problem analyzed in paper concerns thyristor controlled direct current motor used for...Distribution systems operators are often confronted with declined power quality, which can cause substantial economical losses. The problem analyzed in paper concerns thyristor controlled direct current motor used for ski-lift in ski resort as a source of disturbances with negative impact on sensitive electric equipment, which is then unable to operate correctly. To solve mentioned problems, series of measurements of voltage quality parameters were carried out according to the respective valid standards. Crucial power quality parameters necessary for parallel power active filter design were then analyzed. Power active filter compensates power factor and filters characteristic current harmonics. After power active filter was put into operation, power quality problems were eliminated. Payback period is estimated up to four years.展开更多
There are various influencing factors that affect the deformation observation, and deformation signals show differ- ent characteristics under different scales. Wavelet analysis possesses multi-scale property, and the ...There are various influencing factors that affect the deformation observation, and deformation signals show differ- ent characteristics under different scales. Wavelet analysis possesses multi-scale property, and the information entropy has great representational capability to the complexity of information. By hamming window to the wavelet coefficients and windowed wavelet energy obtained by multi-resolution analysis (MRA), it can be achieved to measure the wavelet time entropy (WTE) and wavelet energy entropy (WEE). The paper established deformation signals, selected the parameters, and compared the sin- gularity detection ability and anti-noise ability of two kinds of wavelet entropy and applied them to the singularity detection at the GPS continuously operating reference stations. It is shown that the WTE performs well in weak singularity information de- tection in finite frequency components signals and the WEE is more suitable for detecting the singularity in the signals with complex, strong background noise.展开更多
In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition,...In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition, techniques for directed application, removal, and functionalization of the monolayers are discussed. Bottom-up fabrication techniques have seen increased attention because of their versatility and ease of use. These films see mechanical uses as surface modifiers and micro-scale lubricants. Advances in nanowatt electronics and ultra-low power sensors have opened up an energy harvesting niche for solutions which would have proven ineffective just some years ago. The focus of this study is the two- terminal junction which has potential applications in THz rectification for energy harvesting, medical imaging, and defense sensing. The quantum theory of operation behind these devices is touched on briefly---describing tunneling through the organic monolayers. Commentary on trends in research and potential future work are presented as well.展开更多
基金Supported by the Chinese Marine Renewable Energy Special Fund(Nos.GHME2012ZC05,GHME2013GC03,GHME2013ZC01,GHME2014ZC01)
文摘Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.
文摘Multiple-effect membrane distillation (MEMD) process for enriching semi-volatile organic acids from their individual aqueous solutions was performed by using a hollow fiber-based air gap membrane distillation (AGMD) module with the function of internal heat recovery. Aqueous solutions of glyoxylic acid, glycolic acid, lactic acid, pyrnvic acid, malonic acid and glutaric acid were used as model feed. For a feed of 1% (mass fraction), each acid could be enriched for 8--20 times, which depended on the surface tension of the concentrate. The operation performance of MEMD process was characterized by permeation flux J, performance ratio PR and acid rejection rate R. The effects of cold feed-in temperature, heated feed-in temperature, feed-in volumetric flow rate and feed-in concen- tration on MEMD performance were experimentally evaluated. Maximum values of J, PR and R were 4.8 L/(h-m2), 9.84 and 99.93%, respectively. Moreover, MEMD process demonstrated a fairly good stability in a long-term experiment lasting for 30 d when aqueous solution of 4% (mass fraction) lactic acid was used as a feed.
文摘Idealized cycles of refrigerating machines with adiabatic and isothermal compression of refrigerant vapor were investigated. Energetic characteristics of cycles: specific mass and volume cooling capacity q0 and qv, work of compression 1, refrigerating coefficient of performance e and power N for drive of compressor were compared. These characteristics were calculated for eight refrigerants at temperature of their condensation 30 ℃ and temperatures of boiling -15℃ and -30 ℃. The calculations show that the use of isothermal compression of refrigerant vapor ensures economy of energy during refrigerating machine operation.
基金Supported by the National Natural Science Foundation of China(No.81222021,No.61172008,No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.
文摘Accomodation of power system constraints with the market mechanism is encountered as a major challenge along the way toward implementation of different electricity market designs. Allocation of fixe or flow-dependent inter-zone trading capacities by the PX (power exchange) can not be accepted unreservedly. The paper is meant to show that a nodal electricity market design that is based on bids for local energy and a regulated transmission access including allocation of "entry-exit" transmission capacity would be the desired solution. The market players could easily optimize their portfolio while the TSOs (transmission system operators) are requested to mobilize the network's in-built flexibility to increase the cross zonal capacity. In the proposed market design, the PX's allocation of trading capacity is clearly separate from the TSO's management of the power system operational constraint5. Clear operator roles would enlarge access to electricity market as well as market integration of variable RESs (renewable energy sources) that are critically dependent on short notice access to regionat markets,
基金partially supported by National Natural Science Foundation of China(No. 61202475,61572294,61502218)Outstanding Young Scientists Foundation Grant of Shandong Province(No.BS2014DX016)+3 种基金Nature Science Foundation of Shandong Province (No.ZR2012FQ029)Ph.D.Programs Foundation of Ludong University(No.LY2015033)Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund(Fujian Normal University)(No.15004)the Priority Academic Program Development of Jiangsu Higer Education Institutions,Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology
文摘Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,demonstrating both a hardware and a software implementation.With minor modifications to the hardware accelerators,latency can be reduced to half.Furthermore,we also propose a seminal and more efficient scheme,where we integrate the technology of encryption into the compression algorithm.Our new integrated optimization scheme reaches an increase of 1.6X by using parallel software scheme However,the security level of our new scheme is not desirable compare with previous ones.Fortunately,we prove that this does not affect the application of our schemes.
文摘Distribution systems operators are often confronted with declined power quality, which can cause substantial economical losses. The problem analyzed in paper concerns thyristor controlled direct current motor used for ski-lift in ski resort as a source of disturbances with negative impact on sensitive electric equipment, which is then unable to operate correctly. To solve mentioned problems, series of measurements of voltage quality parameters were carried out according to the respective valid standards. Crucial power quality parameters necessary for parallel power active filter design were then analyzed. Power active filter compensates power factor and filters characteristic current harmonics. After power active filter was put into operation, power quality problems were eliminated. Payback period is estimated up to four years.
基金Supported by the Sub-topics of the National 863 Projects (2009AA 121402-5) the Sub-topics of the National 927 Projects (2009AA 121401) the Natural Science Foundation of Sbandong Province (ZR2010DL003)
文摘There are various influencing factors that affect the deformation observation, and deformation signals show differ- ent characteristics under different scales. Wavelet analysis possesses multi-scale property, and the information entropy has great representational capability to the complexity of information. By hamming window to the wavelet coefficients and windowed wavelet energy obtained by multi-resolution analysis (MRA), it can be achieved to measure the wavelet time entropy (WTE) and wavelet energy entropy (WEE). The paper established deformation signals, selected the parameters, and compared the sin- gularity detection ability and anti-noise ability of two kinds of wavelet entropy and applied them to the singularity detection at the GPS continuously operating reference stations. It is shown that the WTE performs well in weak singularity information de- tection in finite frequency components signals and the WEE is more suitable for detecting the singularity in the signals with complex, strong background noise.
文摘In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition, techniques for directed application, removal, and functionalization of the monolayers are discussed. Bottom-up fabrication techniques have seen increased attention because of their versatility and ease of use. These films see mechanical uses as surface modifiers and micro-scale lubricants. Advances in nanowatt electronics and ultra-low power sensors have opened up an energy harvesting niche for solutions which would have proven ineffective just some years ago. The focus of this study is the two- terminal junction which has potential applications in THz rectification for energy harvesting, medical imaging, and defense sensing. The quantum theory of operation behind these devices is touched on briefly---describing tunneling through the organic monolayers. Commentary on trends in research and potential future work are presented as well.