期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
横风作用下高速列车安全运行速度限值的研究 被引量:45
1
作者 郗艳红 毛军 +2 位作者 高亮 杨国伟 曲文强 《铁道学报》 EI CAS CSCD 北大核心 2012年第6期8-14,共7页
横风作用下的列车安全运行速度限值应通过列车气动特性和车辆轨道动力学特性的分析得到。以我国CRH3型高速列车实车为原型,考虑真实受电弓、转向架等列车的细部特征,假定列车在平地上行驶,对列车速度分别为200、250、300、350和380km/h... 横风作用下的列车安全运行速度限值应通过列车气动特性和车辆轨道动力学特性的分析得到。以我国CRH3型高速列车实车为原型,考虑真实受电弓、转向架等列车的细部特征,假定列车在平地上行驶,对列车速度分别为200、250、300、350和380km/h,横风速度分别为10、15、20、25和30m/s,风向角为90°的25个工况进行气动特性的数值模拟,并采用国内实测轨道谱和德国轨道谱分别对这25个工况的车辆轨道动力学性能进行仿真计算和对比分析。结合国家标准和技术规范,给出CRH3型列车在平地上运行时,横风风速与列车最大安全运行速度之间的对应关系,为横风作用下的列车运行安全控制提供参考。 展开更多
关键词 高速列车 横风 气动特性 轮轨动力学 运行速度限值
下载PDF
大风工况动车组运行速度限值研究 被引量:5
2
作者 许自强 何德华 于卫东 《铁道机车车辆》 2016年第1期39-43,共5页
对于高速动车组,在风区会设置挡风墙以保证大风环境下的列车运行安全、提高列车运行速度。通过对高速动车组气动特性以及轨道动力学特性的综合分析可以得出列车安全运行极限速度。本文主要针对兰新客运专线采用的CRH2C型动车组展开研究... 对于高速动车组,在风区会设置挡风墙以保证大风环境下的列车运行安全、提高列车运行速度。通过对高速动车组气动特性以及轨道动力学特性的综合分析可以得出列车安全运行极限速度。本文主要针对兰新客运专线采用的CRH2C型动车组展开研究,采用模拟仿真的方法,分析车辆运行速度、不同线路条件、不同风载荷情况下列车安全性能。分析发现:当风速大于30m/s,动车组最高运行速度为160km/h;当风速小于20m/s,动车组最高运行速度250km/h。通过仿真分析,得到了兰新客运专线CRH2C型动车组大风风速与列车最高安全运行速度之间的关系,为兰新客运专线高速动车组运行大风工况运行限速提供理论依据。 展开更多
关键词 兰新客运专线 动车组 大风 轮轨动力学 运行速度限值
下载PDF
Running safety and seismic optimization of a fault-crossing simply-supported girder bridge for high-speed railways based on a train-track-bridge coupling system 被引量:4
3
作者 JIANG Hui ZENG Cong +3 位作者 PENG Qiang LI Xin MAXin-yi SONG Guang-song 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2449-2466,共18页
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup... Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively. 展开更多
关键词 high-speed train train-track-bridge interaction fault-crossing ground motion train operation safety speed limit track structure optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部