AIM:To study the relative efficacy of cisapride, metoclopramide,domperidone,erythromycin and mosapride on gastric emptying(GE)and small intestinal transit(SIT) in morphine treated mice. METHODS:Phenol red marker meal ...AIM:To study the relative efficacy of cisapride, metoclopramide,domperidone,erythromycin and mosapride on gastric emptying(GE)and small intestinal transit(SIT) in morphine treated mice. METHODS:Phenol red marker meal was employed to estimate GE and SIT in Swiss albino mice of either sex.The groups included were control,morphine 1 mg/kg(s.c.15 rain before test meal)alone or with(45 rain before test meal p.o.)cisapride 10 mg/kg,metoclopramide 20 mg/kg, domperidone 20 mg/kg,erythromycin 6 mg/kg and mosapride 20 mg/kg. RESULTS:Cisapride,metoclopramide and mosapride were effective in enhancing gastric emptying significantly(P<0.001) whereas other prokinetic agents failed to do so in normal mice.Metoclopramide completely reversed morphine induced delay in gastric emptying followed by mosapride. Metoclopramide alone was effective when given to normal mice in increasing the SIT.Cisapride,though it did not show any significant effect on SIT in normal mice,was able to reverse morphine induced delay in SIT significantly(P<0.001) followed by metoclopramide and mosapride. CONCLUSION:Metoclopramide and cisapride are most effective in reversing morphine-induced delay in gastric emptying and small intestinal transit in mice respectively.展开更多
AIM: We have previously demonstrated that cholangiocytes, the epithelial cells lining intrahepatic bile ducts,encode two functional bile acid transporters via alternative splicing of a single gene to facilitate bile a...AIM: We have previously demonstrated that cholangiocytes, the epithelial cells lining intrahepatic bile ducts,encode two functional bile acid transporters via alternative splicing of a single gene to facilitate bile acid vectorial transport. Cholangiocytes possess ASBT,an apical sodium-dependent bile acid transporter to take up bile acids,and t-ASBT,a basolateral alternatively spliced and truncated form of ASBT to efflux bile acids.Though hepatocyte and ileal bile acid transporters are in part regulated by the flux of bile acids, the effect of alterations in bile acid flux on the expression of t-ASBT in terminal ileocytes remains undear.Thus,we tested the hypothesis that expression of ASBT and t-ASBT in cholangiocytes and ileocytes was regulated by bile acid flux. METHODS: Expression of ASBT and t-ASBT message and protein in cholangiocytes and ileocytes isolated from pair- fed rats given control (C) and 1% taurocholate (TCA) or 5% cholestyramine (CY) enriched diets,were assessed by both quantitative RNase protection assays and quantitative immunoblotting.The data obtained from each of the control groups were pooled to reflect the changes observed following TCA and CY treatments with respect to the control diets. Cholangiocyte taurocholate uptake was determined using a novel microperfusion technique on intrahepatic bile duct units (IBDUs) derived from C,TCA and CY fed rats. RESULTS: In cholangiocytes,both ASBT and t-ASBT message RNA and protein were significantly decreased in response to TCA feeding compared to C diet.In contrast, message and protein of both bile acid transporters significantly increased following CY feeding compared to C diet.In the ileum,TCA feeding significantly up-regulated both ASBT and t-ASBT message and protein compared to C diet,while CY feeding significantly down-regulated message and protein of both bile acid transporters compared to C diet.As anticipated from alterations in cholangiocyte ASBT expression,the uptake of taurocholate in microperfused IBDUs derived from rats on TCA diet decreased 2.7-fold,whereas it increased 1.7-fold in those on CY diet compared to C diet fed groups. CONCLUSION: These data demonstrate that expression of ASBT and t-ASBT in cholangiocytes is regulated by a negative feedback loop while the expression of these transporters in terminal ileum is modified via positive feedback.Thus, while transcriptional regulatory mechanisms in response to alterations in bile acid pool size are operative in both cholangiocytes and ileocytes,each cell type responds differently to bile acid supplementation and depletion.展开更多
Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of more than 80% of land plants. Experi- ments on the relationship between the host plant and AM in soil or in sterile root-organ cult...Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of more than 80% of land plants. Experi- ments on the relationship between the host plant and AM in soil or in sterile root-organ culture have provided clear evidence that the extraradical mycelia of AM fungi uptake various forms of nitrogen (N) and transport the assimilated N to the roots of the host plant. However, the uptake mechanisms of various forms of N and its translocation and transfer from the fungus to the host are virtually unknown. Therefore, there is a dearth of integrated models describing the movement of N through the AM fungal hyphae. Recent studies examined Ri T-DNA-transformed carrot roots colonized with AM fungi in ~SN tracer experi- ments. In these experiments, the activities of key enzymes were determined, and expressions of genes related to N assimilation and translocation pathways were quantified. This review summarizes and discusses the results of recent research on the forms of N uptake, transport, degradation, and transfer to the roots of the host plant and the underlying mechanisms, as well as re- search on the forms of N and carbon used by germinating spores and their effects on amino acid metabolism. Finally, a path- way model summarizing the entire mechanism of N metabolism in AM fungi is outlined.展开更多
An experimental platform is constructed to photograph fibers' motion within rotor spinning unit, which is mainly composed of a transparent rotor and a transport channel based on the similarity theory. The fibers will...An experimental platform is constructed to photograph fibers' motion within rotor spinning unit, which is mainly composed of a transparent rotor and a transport channel based on the similarity theory. The fibers will stretch and gather into a fiber bundle in the transport channel. The velocity of fibers is increasing along the inlet to the outlet of the transport channel, and the fibers' maximum velocity appears at the outlet of transport channel. The straightness of the fiber bundle is related to the convergence degree of the transport channel, and the greater the convergence degree is, the straighter the fiber bundle stretches. The results will provide a useful insight to the yam-forming mechanism of rotor spinning.展开更多
文摘AIM:To study the relative efficacy of cisapride, metoclopramide,domperidone,erythromycin and mosapride on gastric emptying(GE)and small intestinal transit(SIT) in morphine treated mice. METHODS:Phenol red marker meal was employed to estimate GE and SIT in Swiss albino mice of either sex.The groups included were control,morphine 1 mg/kg(s.c.15 rain before test meal)alone or with(45 rain before test meal p.o.)cisapride 10 mg/kg,metoclopramide 20 mg/kg, domperidone 20 mg/kg,erythromycin 6 mg/kg and mosapride 20 mg/kg. RESULTS:Cisapride,metoclopramide and mosapride were effective in enhancing gastric emptying significantly(P<0.001) whereas other prokinetic agents failed to do so in normal mice.Metoclopramide completely reversed morphine induced delay in gastric emptying followed by mosapride. Metoclopramide alone was effective when given to normal mice in increasing the SIT.Cisapride,though it did not show any significant effect on SIT in normal mice,was able to reverse morphine induced delay in SIT significantly(P<0.001) followed by metoclopramide and mosapride. CONCLUSION:Metoclopramide and cisapride are most effective in reversing morphine-induced delay in gastric emptying and small intestinal transit in mice respectively.
文摘AIM: We have previously demonstrated that cholangiocytes, the epithelial cells lining intrahepatic bile ducts,encode two functional bile acid transporters via alternative splicing of a single gene to facilitate bile acid vectorial transport. Cholangiocytes possess ASBT,an apical sodium-dependent bile acid transporter to take up bile acids,and t-ASBT,a basolateral alternatively spliced and truncated form of ASBT to efflux bile acids.Though hepatocyte and ileal bile acid transporters are in part regulated by the flux of bile acids, the effect of alterations in bile acid flux on the expression of t-ASBT in terminal ileocytes remains undear.Thus,we tested the hypothesis that expression of ASBT and t-ASBT in cholangiocytes and ileocytes was regulated by bile acid flux. METHODS: Expression of ASBT and t-ASBT message and protein in cholangiocytes and ileocytes isolated from pair- fed rats given control (C) and 1% taurocholate (TCA) or 5% cholestyramine (CY) enriched diets,were assessed by both quantitative RNase protection assays and quantitative immunoblotting.The data obtained from each of the control groups were pooled to reflect the changes observed following TCA and CY treatments with respect to the control diets. Cholangiocyte taurocholate uptake was determined using a novel microperfusion technique on intrahepatic bile duct units (IBDUs) derived from C,TCA and CY fed rats. RESULTS: In cholangiocytes,both ASBT and t-ASBT message RNA and protein were significantly decreased in response to TCA feeding compared to C diet.In contrast, message and protein of both bile acid transporters significantly increased following CY feeding compared to C diet.In the ileum,TCA feeding significantly up-regulated both ASBT and t-ASBT message and protein compared to C diet,while CY feeding significantly down-regulated message and protein of both bile acid transporters compared to C diet.As anticipated from alterations in cholangiocyte ASBT expression,the uptake of taurocholate in microperfused IBDUs derived from rats on TCA diet decreased 2.7-fold,whereas it increased 1.7-fold in those on CY diet compared to C diet fed groups. CONCLUSION: These data demonstrate that expression of ASBT and t-ASBT in cholangiocytes is regulated by a negative feedback loop while the expression of these transporters in terminal ileum is modified via positive feedback.Thus, while transcriptional regulatory mechanisms in response to alterations in bile acid pool size are operative in both cholangiocytes and ileocytes,each cell type responds differently to bile acid supplementation and depletion.
基金supported by the National Natural Science Foundation of China (Grant No. 30970101)
文摘Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of more than 80% of land plants. Experi- ments on the relationship between the host plant and AM in soil or in sterile root-organ culture have provided clear evidence that the extraradical mycelia of AM fungi uptake various forms of nitrogen (N) and transport the assimilated N to the roots of the host plant. However, the uptake mechanisms of various forms of N and its translocation and transfer from the fungus to the host are virtually unknown. Therefore, there is a dearth of integrated models describing the movement of N through the AM fungal hyphae. Recent studies examined Ri T-DNA-transformed carrot roots colonized with AM fungi in ~SN tracer experi- ments. In these experiments, the activities of key enzymes were determined, and expressions of genes related to N assimilation and translocation pathways were quantified. This review summarizes and discusses the results of recent research on the forms of N uptake, transport, degradation, and transfer to the roots of the host plant and the underlying mechanisms, as well as re- search on the forms of N and carbon used by germinating spores and their effects on amino acid metabolism. Finally, a path- way model summarizing the entire mechanism of N metabolism in AM fungi is outlined.
基金supported by National Natural Science Foundation of China under Grant No.51576180Zhejiang Provincial Natural Science Foundation under Grant No.LZ14E050004Project of 521 Talents Cultivation in Zhejiang Sci-Tech University
文摘An experimental platform is constructed to photograph fibers' motion within rotor spinning unit, which is mainly composed of a transparent rotor and a transport channel based on the similarity theory. The fibers will stretch and gather into a fiber bundle in the transport channel. The velocity of fibers is increasing along the inlet to the outlet of the transport channel, and the fibers' maximum velocity appears at the outlet of transport channel. The straightness of the fiber bundle is related to the convergence degree of the transport channel, and the greater the convergence degree is, the straighter the fiber bundle stretches. The results will provide a useful insight to the yam-forming mechanism of rotor spinning.