期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
船池运载行车行走轮侧向滑移的分析与处理
1
作者 陈汛平 《武汉交通科技大学学报》 1995年第1期86-89,共4页
分析了船池运载行车行走轮侧向滑移的原因,从理论上提出了以浮动支承结构取代固定支承结构,以动态平行调整取代静态平行调整的方案.实际验证了这种方案是可行的.
关键词 运载行车 行轮 侧向滑移 船模 流体动力试验
下载PDF
原理、设计、结构
2
《交通建设与管理》 1995年第10期28-29,共2页
关键词 运载行车 主机功率 半滑行艇 小水线面双体船 自由叶轮 有害振动 耐波性 螺旋桨 多工况 船池
下载PDF
Numerical simulation of wheel wear evolution for heavy haul railway 被引量:13
3
作者 王璞 高亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期196-207,共12页
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati... The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance. 展开更多
关键词 heavy haul railway wheel wear evolution wheel-rail rolling contact vehicle-track coupling dynamics profile updating
下载PDF
Determination method of load balance ranges for train operation safety under strong wind 被引量:3
4
作者 田红旗 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1146-1154,共9页
The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift f... The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China). 展开更多
关键词 strong wind train load balance range overturning coefficient aerodynamic performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部