As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transportin...As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.展开更多
Movement of sediment load and its pattern of transportation along nearshore coastal water is a very important phenomenon to be assessed for different sector of coastal Engineering. To develop and understand the physic...Movement of sediment load and its pattern of transportation along nearshore coastal water is a very important phenomenon to be assessed for different sector of coastal Engineering. To develop and understand the physical processes responsible for shaping the ongoing evolution of the coast and to develop the management strategies to deal the impact of human activities on the coastal zone and as well as for adapting to the hazards associated with the people living on the coast, knowledge of the mechanism, processes and the pattern of sediment movement in the nearshore zone is of utmost importance. Nearshore zone is a very active area, where a series of dynamic processes occur in response to changing wave climates and sediment budgets. Nowadays mathematical modeling is an attractive alternative and becoming a very viable approach to study the sediment movement pattern with the advanced computational facilities and improved understanding on wave mechanics and sediment transport processes. It is very effective, reliable and also comfortable to study the pattern of sediment transportation including yield, distribution and management of sediment with the help of mathematical model. Validity of forecast in sediment transport depends on both mathematical modeling technique and boundary conditions.展开更多
基金Project(50975290) supported by the National Natural Science Foundation of ChinaProject(2011QNZT057) supported by the Basic Operational Cost of Special Research Funding of Central Universities in ChinaProject(11JJ5028) supported by Hunan Provincial Natural Science Foundation,China
文摘As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.
文摘Movement of sediment load and its pattern of transportation along nearshore coastal water is a very important phenomenon to be assessed for different sector of coastal Engineering. To develop and understand the physical processes responsible for shaping the ongoing evolution of the coast and to develop the management strategies to deal the impact of human activities on the coastal zone and as well as for adapting to the hazards associated with the people living on the coast, knowledge of the mechanism, processes and the pattern of sediment movement in the nearshore zone is of utmost importance. Nearshore zone is a very active area, where a series of dynamic processes occur in response to changing wave climates and sediment budgets. Nowadays mathematical modeling is an attractive alternative and becoming a very viable approach to study the sediment movement pattern with the advanced computational facilities and improved understanding on wave mechanics and sediment transport processes. It is very effective, reliable and also comfortable to study the pattern of sediment transportation including yield, distribution and management of sediment with the help of mathematical model. Validity of forecast in sediment transport depends on both mathematical modeling technique and boundary conditions.