Transportation problem on network needs to determine the freight quantity and the transportation route between supply point and demand point. Therefore, taken the uncertainty of freight supply and demand into account,...Transportation problem on network needs to determine the freight quantity and the transportation route between supply point and demand point. Therefore, taken the uncertainty of freight supply and demand into account, a collaborative optimization model is formulated with transportation capacity constraint. In addition, a two-stage genetic algorithm (GA) is put forward. Herein, the first stage of this GA is adopted a priority-based encoding method for determining the supply and demand relationship between different points. Then supply and demand relationship which the supply and the demand are both greater than zero is a minimum cost flow (MCF) problem on network in the second stage. Aim at the purpose to solve MCF problem, a GA is employed. Moreover, this algorithm is suitable for balance and unbalance transportation on directed network or undirected network. At last, the model and algorithm are verified to be efficient by a numerical example.展开更多
基金This project is supported in part by Natural Science Foundation of Gansu Province (0710RJZA048) National Natural Science Foundation of China(60870008)
文摘Transportation problem on network needs to determine the freight quantity and the transportation route between supply point and demand point. Therefore, taken the uncertainty of freight supply and demand into account, a collaborative optimization model is formulated with transportation capacity constraint. In addition, a two-stage genetic algorithm (GA) is put forward. Herein, the first stage of this GA is adopted a priority-based encoding method for determining the supply and demand relationship between different points. Then supply and demand relationship which the supply and the demand are both greater than zero is a minimum cost flow (MCF) problem on network in the second stage. Aim at the purpose to solve MCF problem, a GA is employed. Moreover, this algorithm is suitable for balance and unbalance transportation on directed network or undirected network. At last, the model and algorithm are verified to be efficient by a numerical example.