The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the pr...The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.展开更多
Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndro...Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications.展开更多
Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysacchar...Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucraseisomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine.展开更多
The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both si...The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both sides of graphene nanopore with various diameters. Then, their changing relationship with respect to the nanopore diameter is determined. When applying a uniform electric field, polar water molecules are rearranged so that the corresponding relationship between the polarized degree of these molecules and the nanopore diameter can be created. Based on the theoretical model of ion transportation through nanochannels,the changing relationship between the concentration of anions/cations in nanochannels and bulk solution concentration is quantitatively analyzed. The results show that the increase of potential drop and charge accumulation, as well as a more obvious water polarization, will occur with the decrease of nanopore diameter. In addition, hydrogen ion concentration has a large proportion in nanochannels with a sodium chloride(NaCl) solution at a relative low concentration. As the NaCl concentration increases, the concentration appreciation of sodium ions tends to be far greater than the concentration drop of chloride ions. Therefore, sodium ion concentration makes more contribution to ionic conductance.展开更多
AIM: Growth hormone (GH) directly interacts with the enterocyte stimulating ion absorption and reducing ion secretion induced by agonists of cAMR Since nitric oxide (NO) is involved in the regulation of transepit...AIM: Growth hormone (GH) directly interacts with the enterocyte stimulating ion absorption and reducing ion secretion induced by agonists of cAMR Since nitric oxide (NO) is involved in the regulation of transepithelial ion transport and acts as a second messenger for GH hemodynamic effects, we tested the hypothesis that NO may be involved in the resulting effects of GH on intestinal ion transport. METHODS: Electrical parameters reflecting transepithelial ion transport were measured in Caco-2 cell monolayers mounted in Ussing chambers and exposed to GH and cholera toxin (CT) alone or in combination, in the presence or absence of the NO synthase (NOS) inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME). Similar experiments were conducted to determine cAMP and nitrite/nitrate concentrations. NOS expression was assayed by Western blot analysis. RESULTS: L-NAME causes total abrogation of absorptive and antisecretory effects by GH on intestinal ion transport, In addition, L-NAME was able to inhibit the GH-effects on intracellular cAMP concentration under basal conditions and in response to CT, GH induced a Ca^2+ -dependent increase of nitrites/nitrates production, indicating the involvement of the constitutive rather than the inducible NOS isoform, which was directly confirmed by Western blot analysis. CONCLUSION: These results suggest that the GH effects on intestinal ion transport, either under basal conditions or in the presence of cAMP-stimulated ion secretion, are mediated at an intracellular level by the activity of cNOS.展开更多
Background: The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a ...Background: The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation,redox reactions, and hydration status.Methods: A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, Clinical Trials.gov, Science Direct,Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response","microbiota", "nutrition", and "probiotics".Results: Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels.Conclusion: The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.展开更多
Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was bui...Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was built by GAMBIT,on the basis of which the simulation was done by implicit solver of FLUENT 2ddp.The results show that hydraulic loss of pipe transportation is less than the pressure produced by gravity,which means the backfilling material can flow by itself.When the inlet velocity is 3.2 m/s,the maximum velocity of 4.10 m/s is at the elbow and the maximum velocity in the horizontal pipe is 3.91 m/s,which can both meet the stability requirement.The results of the simulation are proved to be reliable by the residual monitor plotting of related parameter,so it can be concluded that the system of pipe transportation is safe.展开更多
A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recover...A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is l(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, rheoiogical paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 YuarffL good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.展开更多
Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered ...Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered to be a useful method for hazard mitigation.Previous work has concentrated on the different types of sabo dams such as close-type sabo dam,open-type sabo dam.However,little attention has been paid to the spillway structure of sabo dam.In the paper,a new type of spillway structure with lateral contraction was proposed.Debris flow patterns under four different spillway structures were investigated.The projection theory was employed to predict trajectory of debris flow out from the spillway and to estimate the incident angle and terminal velocity before it plunged into the scour hole behind the sabo dam.The results indicated that the estimated data were in good agreement with the experimental ones.The discrepancy between the estimated and experimental values of main parameters remained below 21.82%(relative error).Additionally,the effects of debris flow scales under different spillway structures were considered to study the scour law.Although the debris flow pattern and scour law behind the sabo dam under different operating conditions was analyzed in this paper,further study on the scour mechanism andthe maximum scour depth estimation based on scour theory is still required in the future.展开更多
In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid ...In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid waste.Secondly,the integrated dis-posal and transport system for industry solid waste was introduced,in particular,the oper-ating principles,equipment set-up,key technology and technical parameters.Next,thispaper illustrated the application of this integrated system.Such as it can transport coalsludge with sufficiently high solids content(about 72%~77%)and high apparent viscosity(about 1 000~3 000 Pa.s)directly by pipeline having no use for water and addition agent.Generally,the transport distance is about 1 000 m.This system has been successfullyused in innocuous disposition and efficient utilization of other industrial byproducts or solidwastes,such as city sludge and paper making waste.The integrated system causes nopollution to the environment for its complete seal and realizes protecting the environment,conserving the energy,promoting the development of cycling economic.Finally,the paperdiscussed the research works that were needed for studying such pipeline transport sys-tem and narrates the relevant condition and application status.展开更多
As special cylindrical briquettes of coal for long distance pipeline transportation and directly cleaned combustion the cleaned coal logs should possess two characteristics of transportation in pipeline and cleaned co...As special cylindrical briquettes of coal for long distance pipeline transportation and directly cleaned combustion the cleaned coal logs should possess two characteristics of transportation in pipeline and cleaned combustion. In order to make cleaned coal logs a rational technology for manufacturing, cleaned coal logs was designed and compound sulfur fixing binders with high effects of binding and sulfur-fixing was selected and combined. In addition, by means of characteristic experiments of strength, wear, waterproof and sulfur-fixing five different cleaned coal logs made with different compound sulfur fixing binders in different compaction conditions was tested and measured. Experimental results indicated that the manufacturing technology of cleaned coal logs was reasonable and the combination of compound sulfur fixing binders was scientific. Cleaned coal logs made up with the fourth group of coal mixture had high strength, good waterproof property, efficient sulfur-fixing, good characteristic of transportation, and achieved the performance requirement for pipeline transportation and sulfur fixing.展开更多
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No.50439010the Main Program of the Ministry of Education of China under Grant No.305003
文摘The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.
文摘Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications.
文摘Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucraseisomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine.
基金The National Basic Research Program of China(973Program)(No.2011CB707600)the National Natural Science Founda tion of China(No.51435003,51375092)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20160935)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.16KJB460015)
文摘The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both sides of graphene nanopore with various diameters. Then, their changing relationship with respect to the nanopore diameter is determined. When applying a uniform electric field, polar water molecules are rearranged so that the corresponding relationship between the polarized degree of these molecules and the nanopore diameter can be created. Based on the theoretical model of ion transportation through nanochannels,the changing relationship between the concentration of anions/cations in nanochannels and bulk solution concentration is quantitatively analyzed. The results show that the increase of potential drop and charge accumulation, as well as a more obvious water polarization, will occur with the decrease of nanopore diameter. In addition, hydrogen ion concentration has a large proportion in nanochannels with a sodium chloride(NaCl) solution at a relative low concentration. As the NaCl concentration increases, the concentration appreciation of sodium ions tends to be far greater than the concentration drop of chloride ions. Therefore, sodium ion concentration makes more contribution to ionic conductance.
基金a grant from the Ministero della Sanita' AIDS research project 2001 program 50.D.28 and by grant from CNR,NO. 94.02505 CT04
文摘AIM: Growth hormone (GH) directly interacts with the enterocyte stimulating ion absorption and reducing ion secretion induced by agonists of cAMR Since nitric oxide (NO) is involved in the regulation of transepithelial ion transport and acts as a second messenger for GH hemodynamic effects, we tested the hypothesis that NO may be involved in the resulting effects of GH on intestinal ion transport. METHODS: Electrical parameters reflecting transepithelial ion transport were measured in Caco-2 cell monolayers mounted in Ussing chambers and exposed to GH and cholera toxin (CT) alone or in combination, in the presence or absence of the NO synthase (NOS) inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME). Similar experiments were conducted to determine cAMP and nitrite/nitrate concentrations. NOS expression was assayed by Western blot analysis. RESULTS: L-NAME causes total abrogation of absorptive and antisecretory effects by GH on intestinal ion transport, In addition, L-NAME was able to inhibit the GH-effects on intracellular cAMP concentration under basal conditions and in response to CT, GH induced a Ca^2+ -dependent increase of nitrites/nitrates production, indicating the involvement of the constitutive rather than the inducible NOS isoform, which was directly confirmed by Western blot analysis. CONCLUSION: These results suggest that the GH effects on intestinal ion transport, either under basal conditions or in the presence of cAMP-stimulated ion secretion, are mediated at an intracellular level by the activity of cNOS.
文摘Background: The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation,redox reactions, and hydration status.Methods: A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, Clinical Trials.gov, Science Direct,Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response","microbiota", "nutrition", and "probiotics".Results: Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels.Conclusion: The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.
基金Project(2008BAB32B03) supported by the National Science and Technology Pillar Program during the 11th Five-year Plan Period of China
文摘Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was built by GAMBIT,on the basis of which the simulation was done by implicit solver of FLUENT 2ddp.The results show that hydraulic loss of pipe transportation is less than the pressure produced by gravity,which means the backfilling material can flow by itself.When the inlet velocity is 3.2 m/s,the maximum velocity of 4.10 m/s is at the elbow and the maximum velocity in the horizontal pipe is 3.91 m/s,which can both meet the stability requirement.The results of the simulation are proved to be reliable by the residual monitor plotting of related parameter,so it can be concluded that the system of pipe transportation is safe.
基金Projects 2006BAB02A03 supported by the National Key Technology Research and Development ProgramProjects 2006BA02B05 by the 11th Five Year Key Program for Science and Technology Development of China
文摘A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is l(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, rheoiogical paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 YuarffL good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.
基金supported by the National Natural Science Foundation of China (Grant No.51209195)Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process,Chinese Academy of Sciences,Science and Technology Service Network Initiative of Chinese Academy of Sciences (Grant No.KFJ-EW-STS-094)the Youth Foundation of the Institute of Mountain Hazards and Environment,CAS (Grant No.SDS-QN-1302)
文摘Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered to be a useful method for hazard mitigation.Previous work has concentrated on the different types of sabo dams such as close-type sabo dam,open-type sabo dam.However,little attention has been paid to the spillway structure of sabo dam.In the paper,a new type of spillway structure with lateral contraction was proposed.Debris flow patterns under four different spillway structures were investigated.The projection theory was employed to predict trajectory of debris flow out from the spillway and to estimate the incident angle and terminal velocity before it plunged into the scour hole behind the sabo dam.The results indicated that the estimated data were in good agreement with the experimental ones.The discrepancy between the estimated and experimental values of main parameters remained below 21.82%(relative error).Additionally,the effects of debris flow scales under different spillway structures were considered to study the scour law.Although the debris flow pattern and scour law behind the sabo dam under different operating conditions was analyzed in this paper,further study on the scour mechanism andthe maximum scour depth estimation based on scour theory is still required in the future.
基金Science and Technology Corporation Innovation Fund of China(02C26211100499) PH.D Program Fund(20020290011)
文摘In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid waste.Secondly,the integrated dis-posal and transport system for industry solid waste was introduced,in particular,the oper-ating principles,equipment set-up,key technology and technical parameters.Next,thispaper illustrated the application of this integrated system.Such as it can transport coalsludge with sufficiently high solids content(about 72%~77%)and high apparent viscosity(about 1 000~3 000 Pa.s)directly by pipeline having no use for water and addition agent.Generally,the transport distance is about 1 000 m.This system has been successfullyused in innocuous disposition and efficient utilization of other industrial byproducts or solidwastes,such as city sludge and paper making waste.The integrated system causes nopollution to the environment for its complete seal and realizes protecting the environment,conserving the energy,promoting the development of cycling economic.Finally,the paperdiscussed the research works that were needed for studying such pipeline transport sys-tem and narrates the relevant condition and application status.
基金Supported by the National Natural Science Foundation of China (50364003)
文摘As special cylindrical briquettes of coal for long distance pipeline transportation and directly cleaned combustion the cleaned coal logs should possess two characteristics of transportation in pipeline and cleaned combustion. In order to make cleaned coal logs a rational technology for manufacturing, cleaned coal logs was designed and compound sulfur fixing binders with high effects of binding and sulfur-fixing was selected and combined. In addition, by means of characteristic experiments of strength, wear, waterproof and sulfur-fixing five different cleaned coal logs made with different compound sulfur fixing binders in different compaction conditions was tested and measured. Experimental results indicated that the manufacturing technology of cleaned coal logs was reasonable and the combination of compound sulfur fixing binders was scientific. Cleaned coal logs made up with the fourth group of coal mixture had high strength, good waterproof property, efficient sulfur-fixing, good characteristic of transportation, and achieved the performance requirement for pipeline transportation and sulfur fixing.