The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparis...The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.展开更多
This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the ba...This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the basis functions.Under several specific constraints,the optimal error estimates are obtained,i.e.,the first order accuracy of the velocities in H1-norm and the pressure in L2-norm,as well as the second order accuracy of the velocities in L2-norm.Besides,we clarify the differences between rectangular and quadrilateral finite element approximation.In addition,we give several examples to verify the validity of our error estimates.展开更多
This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" cond...This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.展开更多
文摘The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.
基金supported by National Natural Science Foundation of China(GrantNo.11071139)National Basic Research Program of China(Grant No.2011CB309705)Tsinghua University Initiative Scientific Research Program
文摘This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the basis functions.Under several specific constraints,the optimal error estimates are obtained,i.e.,the first order accuracy of the velocities in H1-norm and the pressure in L2-norm,as well as the second order accuracy of the velocities in L2-norm.Besides,we clarify the differences between rectangular and quadrilateral finite element approximation.In addition,we give several examples to verify the validity of our error estimates.
基金supported by National Natural Science Foundation of China (Grant No. 11471334)Program for New Century Excellent Talents in University (Grant No. NCET-12-0085)
文摘This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.