期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
和码输入技术中字根编码的建构研究
1
作者 汪世杰 《九江学院学报(自然科学版)》 CAS 2011年第2期32-34,共3页
30年前,英文输入计算机轻松自如,汉字输入却困难重重。自王永明于1986年发明了汉字输入技术———五笔字型以来,使用该技术输入汉字最快速度可以达到每分钟250个汉字。2004年,欧阳贵林发明了计算机和手机统一通用的汉字输入技术———和... 30年前,英文输入计算机轻松自如,汉字输入却困难重重。自王永明于1986年发明了汉字输入技术———五笔字型以来,使用该技术输入汉字最快速度可以达到每分钟250个汉字。2004年,欧阳贵林发明了计算机和手机统一通用的汉字输入技术———和码[1]。 展开更多
关键词 和码 字根 近代函数
下载PDF
Strong Approximation Method and the(Functional)Law of Iterated Logarithm for GI/G/1 Queue 被引量:2
2
作者 GUO Yongjiang HOU Xiyang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第5期1097-1106,共10页
In this paper, a unified method based on the strong approximation(SA) of renewal process(RP) is developed for the law of the iterated logarithm(LIL) and the functional LIL(FLIL), which quantify the magnitude of the as... In this paper, a unified method based on the strong approximation(SA) of renewal process(RP) is developed for the law of the iterated logarithm(LIL) and the functional LIL(FLIL), which quantify the magnitude of the asymptotic rate of the increasing variability around the mean value of the RP in numerical and functional forms respectively. For the GI/G/1 queue, the method provides a complete analysis for both the LIL and the FLIL limits for four performance functions: The queue length, workload, busy time and idle time processes, covering three regimes divided by the traffic intensity. 展开更多
关键词 GI/G/1 queue renewal process (RP) strong approximation (SA) method the functional LIL (FLIL) the law of the iterated logarithm (LIL)
原文传递
Analytic Solutions of a Polynomial-Like Iterative Functional Equation near Resonance 被引量:2
3
作者 刘凌霞 司建国 《Journal of Mathematical Research and Exposition》 CSCD 2009年第4期737-744,共8页
In this paper existence of local analytic solutions of a polynomial-like iterative functional equation is studied. As well as in previous work, we reduce this problem with the SchrSder transformation to finding analyt... In this paper existence of local analytic solutions of a polynomial-like iterative functional equation is studied. As well as in previous work, we reduce this problem with the SchrSder transformation to finding analytic solutions of a functional equation without iteration of the unknown function f. For technical reasons, in previous work the constant α given in the Schroder transformation, i.e., the eigenvalue of the linearized f at its fixed point O, is required to fulfill that α is off the unit circle S^1 or lies on the circle with the Diophantine condition. In this paper, we obtain results of analytic solutions in the case of α at resonance, i.e., at a root of the unity and the case of α near resonance under the Brjuno condition. 展开更多
关键词 iterative functional equation analytic solutions diophantine condition Brjuno condition resonance.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部