An analytic expression for π and π* electronic structure of graphene is derived within the tight-binding approximation. Including up to fifth-nearest neighbors, the tight-binding description of electronic dispersio...An analytic expression for π and π* electronic structure of graphene is derived within the tight-binding approximation. Including up to fifth-nearest neighbors, the tight-binding description of electronic dispersion quite accurately reproduces the first-principle calculation result over the entire Brillouin zone. The maximal deviation of the fifth-nearest tight-binding result from the first-principle result is only 6 meV for π band, and 25 meV for π* band. This 25 meV deviation is only one-tenth of the maximal deviation of the third-nearest tight-binding result. It is more important that the fitted parameters exponentially approach to zero as the distance between interacting atoms increases.展开更多
基金Supported from the Scientific Research Foundation of Henan University of Science and Technology under Grant Nos.2008ZY036Student Research Training Program 2009178, and 2009183
文摘An analytic expression for π and π* electronic structure of graphene is derived within the tight-binding approximation. Including up to fifth-nearest neighbors, the tight-binding description of electronic dispersion quite accurately reproduces the first-principle calculation result over the entire Brillouin zone. The maximal deviation of the fifth-nearest tight-binding result from the first-principle result is only 6 meV for π band, and 25 meV for π* band. This 25 meV deviation is only one-tenth of the maximal deviation of the third-nearest tight-binding result. It is more important that the fitted parameters exponentially approach to zero as the distance between interacting atoms increases.