-
题名多粒度决策粗糙集中的粒度约简方法
被引量:8
- 1
-
-
作者
桑妍丽
钱宇华
-
机构
山西大学计算机与信息技术学院
计算机智能与中文信息处理教育部重点实验室
-
出处
《计算机科学》
CSCD
北大核心
2017年第5期199-205,共7页
-
基金
国家自然科学基金项目(61672332)
山西省煤基重点科技攻关项目(MQ2014-09)资助
-
文摘
多粒度决策粗糙集模型是一种泛化的多粒度粗糙集模型,该模型结合决策粗糙集数据分析理论和多粒度思想,实现了在多个粒空间进行决策粗糙集理论的建模。在此基础上,利用贝叶斯决策理论具体分析了在多粒度粗糙集模型中乐观和悲观的融合策略下多个粒空间中的概率融合关系,推导出基于最大条件概率和最小条件概率的粗糙集近似表示,进而构建了乐观多粒度决策粗糙集模型和悲观多粒度决策粗糙集模型。在该模型中引入近似分布约简的概念,分析了多个粒空间中的粒度选择问题。基于多粒度近似分布质量定义了多粒度决策粗糙集的粒度重要度,并且基于此给出了悲观和乐观融合策略α-下近似分布约简的粒度约简算法。通过实例验证了该算法的有效性。
-
关键词
多粒度决策粗糙集
贝叶斯决策理论
α-下近似分布约简
粒度约简
近似分布质量
-
Keywords
Multigranulation decision-theoretic rough sets, Bayesian decision theory, α-lower approximate distributionreduction,Granular structure reduction,Approximate distribution quality
-
分类号
TP182
[自动化与计算机技术—控制理论与控制工程]
-