This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector par...This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector parameterization is introduced to convert original problem into a multistage optimization problem, in which a new normalized time variable is adopted on the combination of the subinterval length. Then the rationalized Haar function approximation method, in which an auxiliary function is introduced to dispose path constraints, is used to transform the multistage problem into a nonlinear programming. Furthermore, an adaptive strategy proposed on the basis of errors is adopted to regulate the order of Haar function vectors. Finally, the nonlinear programming for ASP flooding is solved by sequential quadratic programming. To illustrate the performance of proposed method,the experimental comparison method and control vector parameterization(CVP) method are introduced to optimize the original problem directly. By contrastive analysis of results, the accuracy and efficiency of proposed method are confirmed.展开更多
A hybrid learning method combining immune algorithm and least square method is proposed to design the radial basis function(RBF) networks. The immune algorithm based on information entropy is used to determine the str...A hybrid learning method combining immune algorithm and least square method is proposed to design the radial basis function(RBF) networks. The immune algorithm based on information entropy is used to determine the structure and parameters of RBF nonlinear hidden layer, and weights of RBF linear output layer are computed with least square method. By introducing the diversity control and immune memory mechanism, the algorithm improves the efficiency and overcomes the immature problem in genetic algorithm. Computer simulations demonstrate that the RBF networks designed in this method have fast convergence speed with good performances.展开更多
基金Supported by the National Natural Science Foundation of China(61573378)the Fundamental Research Funds for the Central Universities(15CX06064A)
文摘This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector parameterization is introduced to convert original problem into a multistage optimization problem, in which a new normalized time variable is adopted on the combination of the subinterval length. Then the rationalized Haar function approximation method, in which an auxiliary function is introduced to dispose path constraints, is used to transform the multistage problem into a nonlinear programming. Furthermore, an adaptive strategy proposed on the basis of errors is adopted to regulate the order of Haar function vectors. Finally, the nonlinear programming for ASP flooding is solved by sequential quadratic programming. To illustrate the performance of proposed method,the experimental comparison method and control vector parameterization(CVP) method are introduced to optimize the original problem directly. By contrastive analysis of results, the accuracy and efficiency of proposed method are confirmed.
文摘A hybrid learning method combining immune algorithm and least square method is proposed to design the radial basis function(RBF) networks. The immune algorithm based on information entropy is used to determine the structure and parameters of RBF nonlinear hidden layer, and weights of RBF linear output layer are computed with least square method. By introducing the diversity control and immune memory mechanism, the algorithm improves the efficiency and overcomes the immature problem in genetic algorithm. Computer simulations demonstrate that the RBF networks designed in this method have fast convergence speed with good performances.