A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demon...A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.展开更多
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric d...Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of scattering states are attained. The normalized wave functions expressed in terms of hypergeometrie functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solutions is discussed.展开更多
In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro ...In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro algebra.展开更多
The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor ...The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor both methods, series reduction solutions are consequently derived.Higher order similarity reduction equations arelinear variable coefficients ordinary differential equations.By comparison, it is find that the results generated from theapproximate direct method are more general than the results generated from the approximate symmetry perturbationmethod.展开更多
This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerica...This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerical examples are presented to show the ability and efficiency of this method.展开更多
The Friedman's urn model is a popular urn model which is widely used in many disciplines.In particular,it is extensively used in treatment allocation schemes in clinical trials.Its asymptotic properties have been ...The Friedman's urn model is a popular urn model which is widely used in many disciplines.In particular,it is extensively used in treatment allocation schemes in clinical trials.Its asymptotic properties have been studied by many researchers.In literature,it is usually assumed that the expected number of balls added at each stage is a constant in despite of what type of balls are selected,that is,the updating of the urn is assumed to be balanced.When it is not,the asymptotic property of the Friedman's urn model is stated in the book of Hu and Rosenberger(2006) as one of open problems in the area of adaptive designs.In this paper,we show that both the urn composition process and the allocation proportion process can be approximated by a multi-dimensional Gaussian process almost surely for a general multi-color Friedman type urn model with heterogeneous and unbalanced updating.The Gaussian process is a solution of a stochastic differential equation.As an application,we obtain the asymptotic properties including the asymptotic normality and the exact law of the iterated logarithm.展开更多
A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate e...A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate expression of multiple integrals of a continuous function defined in a three-dimensional bounded domain is proposed by combining wavelet expansion and Lagrange boundary extension.Through applying such an integral technique,during the solution of nonlinear partial differential equations,the unknown function and its lower-order partial derivatives can be approximately expressed by its highest-order partial derivative values at nodes.A set of nonlinear algebraic equations with respect to these nodal values of the highest-order partial derivative is obtained using a collocation method.The validation and convergence of the proposed method are examined through several benchmark problems,including the eighth-order two-dimensional and fourth-order three-dimensional boundary value problems and the large deflection bending of von Karman plates.Results demonstrate that the present method has higher accuracy and convergence rate than most existing numerical methods.Most importantly,the convergence rate of the proposed method seems to be independent of the order of the differential equations,because it is always sixth order for second-,fourth-,sixth-,and even eighth-order problems.展开更多
To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d w...To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.展开更多
文摘A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.
基金*Supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2010291, the Professor and Doctor Foundation of Yancheng Teachers University under Grant No. 07YSYJB0203
文摘Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of scattering states are attained. The normalized wave functions expressed in terms of hypergeometrie functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solutions is discussed.
文摘In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro algebra.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10735030,10475055,10675065,and 90503006National Basic Research Program of China (973 Program 2007CB814800)
文摘The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor both methods, series reduction solutions are consequently derived.Higher order similarity reduction equations arelinear variable coefficients ordinary differential equations.By comparison, it is find that the results generated from theapproximate direct method are more general than the results generated from the approximate symmetry perturbationmethod.
文摘This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerical examples are presented to show the ability and efficiency of this method.
基金supported by National Natural Science Foundation of China (Grant No.11071214)Natural Science Foundation of Zhejiang Province (Grant No. R6100119)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-08-0481)Department of Education of Zhejiang Province(Grant No. 20070219)
文摘The Friedman's urn model is a popular urn model which is widely used in many disciplines.In particular,it is extensively used in treatment allocation schemes in clinical trials.Its asymptotic properties have been studied by many researchers.In literature,it is usually assumed that the expected number of balls added at each stage is a constant in despite of what type of balls are selected,that is,the updating of the urn is assumed to be balanced.When it is not,the asymptotic property of the Friedman's urn model is stated in the book of Hu and Rosenberger(2006) as one of open problems in the area of adaptive designs.In this paper,we show that both the urn composition process and the allocation proportion process can be approximated by a multi-dimensional Gaussian process almost surely for a general multi-color Friedman type urn model with heterogeneous and unbalanced updating.The Gaussian process is a solution of a stochastic differential equation.As an application,we obtain the asymptotic properties including the asymptotic normality and the exact law of the iterated logarithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.11925204 and 12172154)the 111 Project(Grant No.B14044)the National Key Project of China(Grant No.GJXM92579).
文摘A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate expression of multiple integrals of a continuous function defined in a three-dimensional bounded domain is proposed by combining wavelet expansion and Lagrange boundary extension.Through applying such an integral technique,during the solution of nonlinear partial differential equations,the unknown function and its lower-order partial derivatives can be approximately expressed by its highest-order partial derivative values at nodes.A set of nonlinear algebraic equations with respect to these nodal values of the highest-order partial derivative is obtained using a collocation method.The validation and convergence of the proposed method are examined through several benchmark problems,including the eighth-order two-dimensional and fourth-order three-dimensional boundary value problems and the large deflection bending of von Karman plates.Results demonstrate that the present method has higher accuracy and convergence rate than most existing numerical methods.Most importantly,the convergence rate of the proposed method seems to be independent of the order of the differential equations,because it is always sixth order for second-,fourth-,sixth-,and even eighth-order problems.
基金supported by National Natural Science Foundation of China(Grant Nos.10971059,11071265 and 11171232)the Funds for Creative Research Groups of China(Grant No.11021101)+2 种基金the National Basic Research Program of China(Grant No.2011CB309703)the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciencesthe Program for Innovation Research in Central University of Finance and Economics
文摘To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.