Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
This work deals with a description of an elastic analysis of eolic blade (preprocessing, processing and post-processing stages). The eolic blade geometry is approximated by flat finite elements in which the membrane...This work deals with a description of an elastic analysis of eolic blade (preprocessing, processing and post-processing stages). The eolic blade geometry is approximated by flat finite elements in which the membrane effects are evaluated using the FF (free formulation) finite element and the flexure effects are calculated using DKT (discrete shear triangle) finite element. The pre-processing stage is implemented using OpenGL library, to provide the graphical construction for geometry, mesh orientation, and other requirements of the finite element model. For the processing stage is built a specific dll (dynamic link library) library implemented in C++ language for the FF and DKT elements analysis. The post-processing stage has been built using specific dialogs to present all results in the graphic interface, where the static displacements of the eolic blade model are shown.展开更多
Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained f...Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained for quadrilateral meshes satisfying regularity assumption and bi-section condition. Furthermore, the superconver- gence results of order EQ1^rot are derived for rectangular meshes. Numerical results are presented to confirm the considered theory.展开更多
A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtaine...A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtained through some novel approaches and techniques.展开更多
This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the ba...This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the basis functions.Under several specific constraints,the optimal error estimates are obtained,i.e.,the first order accuracy of the velocities in H1-norm and the pressure in L2-norm,as well as the second order accuracy of the velocities in L2-norm.Besides,we clarify the differences between rectangular and quadrilateral finite element approximation.In addition,we give several examples to verify the validity of our error estimates.展开更多
To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d w...To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.展开更多
The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciab...The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.展开更多
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
文摘This work deals with a description of an elastic analysis of eolic blade (preprocessing, processing and post-processing stages). The eolic blade geometry is approximated by flat finite elements in which the membrane effects are evaluated using the FF (free formulation) finite element and the flexure effects are calculated using DKT (discrete shear triangle) finite element. The pre-processing stage is implemented using OpenGL library, to provide the graphical construction for geometry, mesh orientation, and other requirements of the finite element model. For the processing stage is built a specific dll (dynamic link library) library implemented in C++ language for the FF and DKT elements analysis. The post-processing stage has been built using specific dialogs to present all results in the graphic interface, where the static displacements of the eolic blade model are shown.
基金supported by National Natural Science Foundation of China (Grant Nos.10971203 and 11271340)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20094101110006)
文摘Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained for quadrilateral meshes satisfying regularity assumption and bi-section condition. Furthermore, the superconver- gence results of order EQ1^rot are derived for rectangular meshes. Numerical results are presented to confirm the considered theory.
基金supported by the National Natural Science Foundation of China under Grant No. 10671184.
文摘A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtained through some novel approaches and techniques.
基金supported by National Natural Science Foundation of China(GrantNo.11071139)National Basic Research Program of China(Grant No.2011CB309705)Tsinghua University Initiative Scientific Research Program
文摘This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the basis functions.Under several specific constraints,the optimal error estimates are obtained,i.e.,the first order accuracy of the velocities in H1-norm and the pressure in L2-norm,as well as the second order accuracy of the velocities in L2-norm.Besides,we clarify the differences between rectangular and quadrilateral finite element approximation.In addition,we give several examples to verify the validity of our error estimates.
基金supported by National Natural Science Foundation of China(Grant Nos.10971059,11071265 and 11171232)the Funds for Creative Research Groups of China(Grant No.11021101)+2 种基金the National Basic Research Program of China(Grant No.2011CB309703)the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciencesthe Program for Innovation Research in Central University of Finance and Economics
文摘To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.
文摘The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.