Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approx...Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approximate versions ofPPA (APPA) are developed for practical applications. In this paper, we compare two APPA methods, both of which can be viewed as prediction-correction methods. The only difference is that they use different search directions in the correction-step. By extending the general forward-backward splitting methods, we obtain Algorithm Ⅰ; in the same way, Algorithm Ⅱ is proposed by spreading the general extra-gradient methods. Our analysis explains theoretically why Algorithm Ⅱ usually outperforms Algorithm Ⅰ. For computation practice, we consider a class of MVI with a special structure, and choose the extending Algorithm Ⅱ to implement, which is inspired by the idea of Gauss-Seidel iteration method making full use of information about the latest iteration. And in particular, self-adaptive techniques are adopted to adjust relevant parameters for faster convergence. Finally, some numerical experiments are reported on the separated MVI. Numerical results showed that the extending Algorithm II is feasible and easy to implement with relatively low computation load.展开更多
The state equations of stochastic control problems,which are controlled stochastic differential equations,are proposed to be discretized by the weak midpoint rule and predictor-corrector methods for the Markov chain a...The state equations of stochastic control problems,which are controlled stochastic differential equations,are proposed to be discretized by the weak midpoint rule and predictor-corrector methods for the Markov chain approximation approach. Local consistency of the methods are proved.Numerical tests on a simplified Merton's portfolio model show better simulation to feedback control rules by these two methods, as compared with the weak Euler-Maruyama discretisation used by Krawczyk.This suggests a new approach of improving accuracy of approximating Markov chains for stochastic control problems.展开更多
基金Project (No. 1027054) supported by the National Natural Science Foundation of China
文摘Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approximate versions ofPPA (APPA) are developed for practical applications. In this paper, we compare two APPA methods, both of which can be viewed as prediction-correction methods. The only difference is that they use different search directions in the correction-step. By extending the general forward-backward splitting methods, we obtain Algorithm Ⅰ; in the same way, Algorithm Ⅱ is proposed by spreading the general extra-gradient methods. Our analysis explains theoretically why Algorithm Ⅱ usually outperforms Algorithm Ⅰ. For computation practice, we consider a class of MVI with a special structure, and choose the extending Algorithm Ⅱ to implement, which is inspired by the idea of Gauss-Seidel iteration method making full use of information about the latest iteration. And in particular, self-adaptive techniques are adopted to adjust relevant parameters for faster convergence. Finally, some numerical experiments are reported on the separated MVI. Numerical results showed that the extending Algorithm II is feasible and easy to implement with relatively low computation load.
基金supported by the China Postdoctoral Science Foundation (No.20080430402).
文摘The state equations of stochastic control problems,which are controlled stochastic differential equations,are proposed to be discretized by the weak midpoint rule and predictor-corrector methods for the Markov chain approximation approach. Local consistency of the methods are proved.Numerical tests on a simplified Merton's portfolio model show better simulation to feedback control rules by these two methods, as compared with the weak Euler-Maruyama discretisation used by Krawczyk.This suggests a new approach of improving accuracy of approximating Markov chains for stochastic control problems.