Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained f...Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained for quadrilateral meshes satisfying regularity assumption and bi-section condition. Furthermore, the superconver- gence results of order EQ1^rot are derived for rectangular meshes. Numerical results are presented to confirm the considered theory.展开更多
The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciab...The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.展开更多
We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangi...We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.展开更多
To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d w...To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.10971203 and 11271340)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20094101110006)
文摘Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained for quadrilateral meshes satisfying regularity assumption and bi-section condition. Furthermore, the superconver- gence results of order EQ1^rot are derived for rectangular meshes. Numerical results are presented to confirm the considered theory.
文摘The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.
基金supported by National Basic Research Program of China(973 Program)(Grant No.2010CB732501)National Natural Science Foundation of China(Grant No.11071268)China Scholarship Council Scientific Research Common Program of Beijing Municipal Commission of Education(Grant No.KM201210005033)
文摘We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.
基金supported by National Natural Science Foundation of China(Grant Nos.10971059,11071265 and 11171232)the Funds for Creative Research Groups of China(Grant No.11021101)+2 种基金the National Basic Research Program of China(Grant No.2011CB309703)the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciencesthe Program for Innovation Research in Central University of Finance and Economics
文摘To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R^d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.